การแก้ปัญหาระบบลำดับที่สอง ตัวอย่างการแก้สมการเชิงอนุพันธ์อันดับสองโดยวิธีลากรองจ์ การแก้ระบบสมการเชิงเส้นโดยใช้วิธีแครเมอร์

ระบบดิฟเฟอเรนเชียลสมการเรียกว่าระบบของรูปแบบ

โดยที่ x คืออาร์กิวเมนต์อิสระ

y ฉัน - ฟังก์ชั่นขึ้นอยู่กับ ,

ใช่ ฉัน | x=x0 =y i0 - เงื่อนไขเริ่มต้น

ฟังก์ชั่นยี่(x) เมื่อทดแทน ระบบสมการจะกลายเป็นอัตลักษณ์ที่เรียกว่า การแก้ระบบสมการเชิงอนุพันธ์.

วิธีการเชิงตัวเลขในการแก้ระบบสมการเชิงอนุพันธ์


สมการเชิงอนุพันธ์อันดับสอง เรียกว่าสมการของรูป



เรียกว่าฟังก์ชัน y(x) เมื่อแทนที่สมการจนกลายเป็นเอกลักษณ์แล้ว การแก้สมการเชิงอนุพันธ์.

การหาคำตอบเฉพาะของสมการ (2) เป็นตัวเลข ซึ่งเป็นไปตามเงื่อนไขเริ่มต้นที่กำหนด นั่นคือ ปัญหาคอชีได้รับการแก้ไขแล้ว

สำหรับคำตอบเชิงตัวเลข สมการเชิงอนุพันธ์อันดับสองจะถูกแปลงเป็นระบบของสมการเชิงอนุพันธ์อันดับหนึ่งสองตัวและลดลงเป็น มุมมองเครื่อง (3). เมื่อต้องการทำเช่นนี้ มีการแนะนำฟังก์ชันใหม่ที่ไม่รู้จัก ทางด้านซ้ายของแต่ละสมการของระบบ เหลือเพียงอนุพันธ์แรกของฟังก์ชันที่ไม่รู้จักเท่านั้น และไม่ควรมีอนุพันธ์ทางด้านขวา

. (3)


ฟังก์ชัน f 2 (x, y 1 , y) ได้รับการแนะนำอย่างเป็นทางการในระบบ (3) เพื่อให้วิธีการที่จะแสดงด้านล่างสามารถใช้เพื่อแก้ระบบตามอำเภอใจของสมการเชิงอนุพันธ์อันดับหนึ่งได้ ให้เราพิจารณาวิธีการเชิงตัวเลขหลายวิธีในการแก้ระบบ (3) การพึ่งพาที่คำนวณได้สำหรับขั้นตอนการรวม i+1 มีดังต่อไปนี้ ในการแก้ระบบสมการ n สูตรการคำนวณมีให้ไว้ข้างต้น ในการแก้ระบบสมการสองสมการ จะสะดวกในการเขียนสูตรการคำนวณโดยไม่มีดัชนีสองเท่าในรูปแบบต่อไปนี้:

  1. วิธีออยเลอร์.

    y 1,i+1 =y 1,i +hf 1 (x i , y 1,i , y i)

    y i+1 =y i +hf 2 (x i, y 1,i, y i)

  2. วิธีรุ่งเง-คุตตะลำดับที่สี่.

    y 1,i+1 =y 1,i +(ม. 1 +2ม. 2 +2ม. 3 +ม. 4)/6,

    ใช่ ฉัน+1 =y ฉัน +(k 1 +2k 2 +2k 3 +k 4)/6,

    ม. 1 =hf 1 (x ผม , y 1,i , y ผม)

    k 1 =hf 2 (x ผม , y 1,i , y ผม)

    ม. 2 =hf 1 (x i +h/2, y 1,i +m 1 /2, y +k 1 /2),

    k 2 =hf 2 (x i +h/2, y 1,i +m 1 /2, y +k 1 /2),

    ม. 3 =hf 1 (x i +h/2, y 1,i +m 2 /2, y +k 2 /2),

    k 3 =hf 2 (x i +h/2, y 1,i +m 2 /2, y +k 2 /2),

    ม. 4 =hf 1 (x i +h, y 1,i +m 3, y i +k 3)

    k 4 =hf 2 (x i +h, y 1,i +m 3, y i +k 3)

    โดยที่ h คือขั้นตอนการบูรณาการ เงื่อนไขเริ่มต้นระหว่างการรวมตัวเลขจะถูกนำมาพิจารณาที่ขั้นตอนเป็นศูนย์: i=0, x=x 0, y 1 =y 10, y=y 0

ทดสอบการมอบหมายงานทดสอบ

การสั่นที่มีอิสระระดับหนึ่ง

เป้า.ศึกษาวิธีการเชิงตัวเลขในการแก้สมการเชิงอนุพันธ์อันดับสองและระบบสมการเชิงอนุพันธ์อันดับหนึ่ง

ออกกำลังกาย.ค้นหาเชิงตัวเลขและเชิงวิเคราะห์:

  1. กฎการเคลื่อนที่ของจุดวัตถุบนสปริง x(t)
  2. กฎการเปลี่ยนแปลงของกระแส I(t) ในวงจรออสซิลเลเตอร์ (วงจร RLC) สำหรับแบบวิธีที่ระบุในตารางที่ 1 และ 2 สร้างกราฟของฟังก์ชันที่จำเป็น

ตัวเลือกสำหรับงาน


ตารางโหมด



ตัวเลือกงานและหมายเลขโหมด:

  1. การเคลื่อนไหวของจุด
  2. RLC - วงจร


ให้เราพิจารณารายละเอียดเพิ่มเติมเกี่ยวกับขั้นตอนในการเขียนสมการเชิงอนุพันธ์และนำมาเป็นรูปแบบเครื่องจักรเพื่ออธิบายการเคลื่อนที่ของวัตถุบนสปริงและวงจร RLC


  1. ชื่อ วัตถุประสงค์ของงานและงาน
  2. คำอธิบายทางคณิตศาสตร์ อัลกอริธึม (สตรอแกรม) และข้อความของโปรแกรม
  3. กราฟหกกราฟของการพึ่งพา (สามค่าที่แน่นอนและค่าประมาณสามค่า) x(t) หรือ I(t) ข้อสรุปเกี่ยวกับงาน

สมการเชิงอนุพันธ์เชิงเส้นลำดับที่สอง

สมการเชิงอนุพันธ์อันดับสองมีรูปแบบ

คำนิยาม.ผลเฉลยทั่วไปของสมการอันดับสองคือฟังก์ชันที่เป็นคำตอบของสมการนี้ไม่ว่าค่าใดๆ ก็ตาม

คำนิยาม.สมการเอกพันธ์เชิงเส้นของลำดับที่สองเรียกว่าสมการ หากค่าสัมประสิทธิ์คงที่นั่นคือ ไม่ขึ้นอยู่กับ สมการนี้เรียกว่าสมการที่มีค่าสัมประสิทธิ์คงที่และเขียนได้ดังนี้: .

เราจะเรียกสมการนี้ว่าสมการแบบไม่เอกพันธ์เชิงเส้น

คำนิยาม.สมการที่ได้มาจากสมการเอกพันธ์เชิงเส้นโดยการแทนที่ฟังก์ชันด้วยหนึ่ง และด้วยกำลังที่สอดคล้องกัน เรียกว่าสมการคุณลักษณะ

เป็นที่ทราบกันดีว่าสมการกำลังสองมีวิธีการแก้ปัญหาขึ้นอยู่กับการเลือกปฏิบัติ: เช่น ถ้า แล้วราก และ เป็นจำนวนจริงที่แตกต่างกัน ถ้าอย่างนั้น. ถ้าเช่น จากนั้นจะเป็นจำนวนจินตภาพ และรากและจะเป็นจำนวนเชิงซ้อน ในกรณีนี้เราตกลงที่จะแสดงถึง

ตัวอย่างที่ 4แก้สมการ

สารละลาย.การแบ่งแยกของสมการกำลังสองนี้จึงเป็น

เราจะแสดงวิธีการหาคำตอบทั่วไปของสมการเชิงเส้นอันดับสองที่เป็นเนื้อเดียวกันโดยใช้รูปแบบของรากของสมการคุณลักษณะ

ถ้า เป็นรากที่แท้จริงของสมการคุณลักษณะ แล้ว

หากรากของสมการคุณลักษณะเท่ากันนั่นคือ จากนั้นหาคำตอบทั่วไปของสมการเชิงอนุพันธ์โดยใช้สูตร หรือ

ถ้าสมการคุณลักษณะมีรากที่ซับซ้อนแล้ว

ตัวอย่างที่ 5หาคำตอบทั่วไปของสมการ

สารละลาย.มาสร้างสมการลักษณะเฉพาะสำหรับสมการเชิงอนุพันธ์นี้กันดีกว่า: รากของมันถูกต้องและแตกต่าง ดังนั้นวิธีแก้ปัญหาทั่วไปคือ

ระบบพื้นฐานของการแก้สมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น ทฤษฎีบทเกี่ยวกับโครงสร้างของคำตอบทั่วไปของสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น ในส่วนนี้ เราจะพิสูจน์ว่าพื้นฐานของสเปซเชิงเส้นของคำตอบบางส่วนของสมการเอกพันธ์สามารถเป็นเซตใดก็ได้ n โซลูชันที่เป็นอิสระเชิงเส้น
Def. 14.5.5.1. ระบบพื้นฐานของการแก้ปัญหา. ระบบพื้นฐานของการแก้ปัญหาสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น n -ลำดับที่ 2 คือระบบอิสระเชิงเส้นใดๆ 1 (x ), 2 (x ), …, ใช่ (x ) ของเขา n โซลูชั่นส่วนตัว
ทฤษฎีบท 14.5.5.1.1 เรื่องโครงสร้างของคำตอบทั่วไปของสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น- วิธีแก้ปัญหาทั่วไป (x ) ของสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้นคือผลรวมเชิงเส้นของฟังก์ชันจากระบบพื้นฐานของคำตอบของสมการนี้:
(x ) = 1 1 (x ) + 2 2 (x ) + …+ ซี นี เอ็น (x ).
เอกสาร
- อนุญาต 1 (x ), 2 (x ), …, ใช่ (x ) เป็นระบบพื้นฐานของการแก้สมการอนุพันธ์เอกพันธ์เชิงเส้น จึงต้องพิสูจน์ว่าวิธีแก้ข้อใดข้อหนึ่งโดยเฉพาะ อะไร ( x ) ของสมการนี้มีอยู่ในสูตร (x ) = 1 1 (x ) + 2 2 (x ) + …+ ซี นี เอ็น (x ) สำหรับค่าคงที่ชุดหนึ่ง 1 , 2 , …, ซีเอ็น - ลองหาจุดใดก็ได้ คำนวณตัวเลข ณ จุดนี้แล้วหาค่าคงที่ 1 , 2 , …, ซีเอ็น เป็นการแก้ระบบสมการพีชคณิตเชิงเส้นแบบไม่เป็นเนื้อเดียวกัน
วิธีแก้ปัญหาดังกล่าวมีอยู่และไม่ซ้ำกัน เนื่องจากดีเทอร์มีแนนต์ของระบบนี้เท่ากับ พิจารณาผลรวมเชิงเส้น (x ) = 1 1 (x ) + 2 2 (x ) + …+ ซี นี เอ็น (x ) ฟังก์ชั่นจากระบบพื้นฐานของการแก้ปัญหาด้วยค่าคงที่เหล่านี้ 1 , 2 , …, ซีเอ็น และเปรียบเทียบกับฟังก์ชัน อะไร ( x - ฟังก์ชั่น (x ) และ อะไร ( x ) เป็นไปตามสมการเดียวกันและเงื่อนไขเริ่มต้นเดียวกันที่จุด x 0 ดังนั้น เนื่องจากความเป็นเอกลักษณ์ของวิธีแก้ปัญหา Cauchy จึงตรงกัน: อะไร ( x ) = 1 1 (x ) + 2 2 (x ) + … + ซี นี เอ็น (x - ทฤษฎีบทได้รับการพิสูจน์แล้ว
จากทฤษฎีบทนี้เป็นไปตามว่ามิติของปริภูมิเชิงเส้นของคำตอบบางส่วนของสมการเอกพันธ์ที่มีค่าสัมประสิทธิ์ต่อเนื่องไม่เกิน n - ยังคงต้องพิสูจน์ว่ามิตินี้ไม่น้อยกว่า n .
ทฤษฎีบท 14.5.5.1.2 ว่าด้วยการมีอยู่ของระบบพื้นฐานของคำตอบของสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น สมการเชิงอนุพันธ์เอกพันธ์เชิงเส้นใดๆ n ลำดับที่มีค่าสัมประสิทธิ์ต่อเนื่องมีระบบการแก้ปัญหาพื้นฐานเช่น ระบบจาก n โซลูชั่นอิสระเชิงเส้น
เอกสาร- ลองหาปัจจัยที่เป็นตัวเลขใดๆ กัน n -ลำดับที่ ไม่เท่ากับศูนย์

การรักษาความเป็นส่วนตัวของคุณเป็นสิ่งสำคัญสำหรับเรา ด้วยเหตุนี้ เราจึงได้พัฒนานโยบายความเป็นส่วนตัวที่อธิบายถึงวิธีที่เราใช้และจัดเก็บข้อมูลของคุณ โปรดตรวจสอบหลักปฏิบัติด้านความเป็นส่วนตัวของเราและแจ้งให้เราทราบหากคุณมีคำถามใดๆ

การรวบรวมและการใช้ข้อมูลส่วนบุคคล

ข้อมูลส่วนบุคคลหมายถึงข้อมูลที่สามารถใช้เพื่อระบุหรือติดต่อบุคคลใดบุคคลหนึ่งโดยเฉพาะ

คุณอาจถูกขอให้ให้ข้อมูลส่วนบุคคลของคุณได้ตลอดเวลาเมื่อคุณติดต่อเรา

ด้านล่างนี้คือตัวอย่างบางส่วนของประเภทของข้อมูลส่วนบุคคลที่เราอาจรวบรวมและวิธีที่เราอาจใช้ข้อมูลดังกล่าว

เราเก็บรวบรวมข้อมูลส่วนบุคคลอะไรบ้าง:

  • เมื่อคุณส่งใบสมัครบนเว็บไซต์ เราอาจรวบรวมข้อมูลต่าง ๆ รวมถึงชื่อ หมายเลขโทรศัพท์ ที่อยู่อีเมลของคุณ ฯลฯ

เราใช้ข้อมูลส่วนบุคคลของคุณอย่างไร:

  • ข้อมูลส่วนบุคคลที่เรารวบรวมช่วยให้เราสามารถติดต่อคุณเพื่อแจ้งข้อเสนอ โปรโมชั่น และกิจกรรมอื่น ๆ และกิจกรรมที่กำลังจะเกิดขึ้นได้ไม่ซ้ำใคร
  • ในบางครั้ง เราอาจใช้ข้อมูลส่วนบุคคลของคุณเพื่อส่งประกาศและการสื่อสารที่สำคัญ
  • เรายังอาจใช้ข้อมูลส่วนบุคคลเพื่อวัตถุประสงค์ภายใน เช่น การดำเนินการตรวจสอบ การวิเคราะห์ข้อมูล และการวิจัยต่างๆ เพื่อปรับปรุงบริการที่เรามีให้และให้คำแนะนำเกี่ยวกับบริการของเราแก่คุณ
  • หากคุณเข้าร่วมการจับรางวัล การประกวด หรือการส่งเสริมการขายที่คล้ายกัน เราอาจใช้ข้อมูลที่คุณให้ไว้เพื่อจัดการโปรแกรมดังกล่าว

การเปิดเผยข้อมูลแก่บุคคลที่สาม

เราไม่เปิดเผยข้อมูลที่ได้รับจากคุณต่อบุคคลที่สาม

ข้อยกเว้น:

  • หากจำเป็น - ตามกฎหมาย ขั้นตอนการพิจารณาคดี ในการดำเนินการทางกฎหมาย และ/หรือตามคำขอสาธารณะหรือคำขอจากหน่วยงานของรัฐในอาณาเขตของสหพันธรัฐรัสเซีย - ให้เปิดเผยข้อมูลส่วนบุคคลของคุณ เรายังอาจเปิดเผยข้อมูลเกี่ยวกับคุณหากเราพิจารณาว่าการเปิดเผยดังกล่าวมีความจำเป็นหรือเหมาะสมเพื่อความปลอดภัย การบังคับใช้กฎหมาย หรือวัตถุประสงค์ที่สำคัญสาธารณะอื่น ๆ
  • ในกรณีของการปรับโครงสร้างองค์กร การควบรวมกิจการ หรือการขาย เราอาจถ่ายโอนข้อมูลส่วนบุคคลที่เรารวบรวมไปยังบุคคลที่สามที่รับช่วงต่อที่เกี่ยวข้อง

การคุ้มครองข้อมูลส่วนบุคคล

เราใช้ความระมัดระวัง - รวมถึงด้านการบริหาร ด้านเทคนิค และทางกายภาพ - เพื่อปกป้องข้อมูลส่วนบุคคลของคุณจากการสูญหาย การโจรกรรม และการใช้งานในทางที่ผิด รวมถึงการเข้าถึง การเปิดเผย การเปลี่ยนแปลง และการทำลายโดยไม่ได้รับอนุญาต

การเคารพความเป็นส่วนตัวของคุณในระดับบริษัท

เพื่อให้มั่นใจว่าข้อมูลส่วนบุคคลของคุณปลอดภัย เราจะสื่อสารมาตรฐานความเป็นส่วนตัวและความปลอดภัยให้กับพนักงานของเราและบังคับใช้หลักปฏิบัติด้านความเป็นส่วนตัวอย่างเคร่งครัด

คำนิยาม. ปัจจัยกำหนดลำดับที่สอง

(*)

; ;

สามกรณีต่อไปนี้เป็นไปได้ในทางทฤษฎี

1. ถ้า แล้วระบบ (*) มีวิธีแก้ปัญหาเฉพาะที่สามารถพบได้โดยใช้สูตรที่เรียกว่าสูตรของ Cramer: , .

2. ถ้า , a (จากนั้น และ ) ระบบ (*) ไม่มีทางแก้ไข

3. ถ้า และ (จากนั้น และ ) แล้วระบบ (*) จะมีจำนวนคำตอบไม่สิ้นสุด (กล่าวคือ แต่ละคำตอบของสมการหนึ่งของระบบก็เป็นคำตอบของสมการอื่นด้วย)

ความคิดเห็น- ดีเทอร์มิแนนต์เรียกว่าดีเทอร์มิแนนต์หลักของระบบ (*) ระบบสามารถแก้ไขได้โดยใช้สูตรของแครมเมอร์ภายใต้เงื่อนไขเท่านั้น มิฉะนั้น คุณจะต้องใช้วิธีอื่น เช่น วิธีเกาส์เซียน

ปัจจัยกำหนดลำดับที่สาม การแก้ระบบสมการเชิงเส้นสามตัวที่มีตัวแปรสามตัวโดยใช้สูตรของแครเมอร์

คำนิยาม. ปัจจัยกำหนดลำดับที่สามเป็นตัวเลขที่เขียนและคำนวณได้ดังนี้

ขอให้เราได้รับระบบสมการของรูปแบบ (*)

ให้เราแนะนำปัจจัยกำหนดต่อไปนี้มาพิจารณา:

– ปัจจัยกำหนดหลักของระบบ (*);

; ; .

เมื่อทำการแก้ไขระบบจะเกิดกรณีดังต่อไปนี้

1. ถ้า แล้วระบบ (*) มีวิธีแก้ปัญหาเฉพาะที่สามารถพบได้โดยใช้สูตรที่เรียกว่าสูตรของแครมเมอร์: .

2. ถ้า แสดงว่าระบบ (1) ไม่สามารถแก้ไขได้โดยใช้วิธีของแครมเมอร์

หมายเหตุ 1.ในกรณีที่ระบบอาจไม่มีคำตอบหรือมีจำนวนคำตอบไม่สิ้นสุด หากต้องการศึกษารายละเอียดเพิ่มเติมและค้นหาระบบการแก้ปัญหาทั่วไป คุณสามารถใช้วิธี Gaussian เช่น

การแก้ระบบสมการเชิงเส้นสามตัวในตัวแปรสามตัว

วิธีเกาส์

เรามาดูแก่นแท้ของวิธีเกาส์โดยใช้ตัวอย่างที่เฉพาะเจาะจงกัน

ตัวอย่าง.แก้ระบบสมการ: (*)

ย้ายตรง.ระบบนี้ถูกลดขนาดให้อยู่ในรูปสามเหลี่ยมทีละขั้นตอนโดยใช้วิธีการบวกพีชคณิต

ในระยะแรก เราแยกเงื่อนไขที่มีตัวแปรออกจากสมการที่สองและสามของระบบ ควรใช้สมการเดียวกันในทั้งสองกรณี (เราจะใช้สมการแรก)

เราได้รับ:

เราเขียนสมการแรกของระบบใหม่โดยไม่มีการเปลี่ยนแปลง และแทนที่สมการที่สองและสามด้วยสมการผลลัพธ์

ระบบจะอยู่ในรูปแบบ:

ในขั้นที่สอง เราจะแยกคำที่มีตัวแปรออกจากสมการที่สามของระบบ ลองใช้สมการที่สองสำหรับอันนี้

เราเขียนสมการสองตัวแรกของระบบใหม่โดยไม่เปลี่ยนแปลง และแทนที่สมการที่สามด้วยสมการผลลัพธ์

เราได้รับระบบสามเหลี่ยม:

ย้อนกลับย้ายเราค้นหาสิ่งแปลกปลอมตามลำดับ โดยเริ่มจากสมการที่สาม

จากสมการที่สามของระบบ เราพบค่าของตัวแปร: .

เราได้รับค่าที่พบลงในสมการที่สองของระบบ ซึ่งเราค้นหาค่าของตัวแปร: .

เราได้รับแทนค่าที่พบและลงในสมการแรกของระบบ ซึ่งเราค้นหาค่าของตัวแปร: .

คำตอบ: .

22. การแก้อสมการเชิงเส้น

ตัวอย่าง
1. ถ้าอย่างนั้น .
2. ถ้าอย่างนั้น .
3. ถ้า , , แล้ว .
4. ถ้า แสดงว่าอสมการไม่มีทางแก้ได้ ความไม่เท่าเทียมกันไม่มีวิธีแก้ปัญหา

23. การแก้อสมการเชิงเส้น

เมื่อแก้ไขความไม่เท่าเทียมกัน อาจมีกรณีต่อไปนี้: ตัวอย่าง
1. ถ้าอย่างนั้น .
2. ถ้าอย่างนั้น .
3. ถ้า แสดงว่าอสมการไม่มีทางแก้ได้ ความไม่เท่าเทียมกันไม่มีวิธีแก้ปัญหา
4. ถ้า , , แล้ว .

24. การแก้ระบบอสมการเชิงเส้นด้วยตัวแปรเดียว

ระบบความไม่เท่าเทียมกัน– นี่คือความไม่เท่าเทียมกันตั้งแต่สองอย่างขึ้นไปที่ต้องการหาวิธีแก้ปัญหาทั่วไป

การแก้ปัญหาระบบความไม่เท่าเทียมกันคือคำตอบทั่วไปของอสมการทั้งหมดในระบบ

มีหลายกรณีที่เป็นไปได้ทางทฤษฎีแม้แต่กับระบบที่มีความไม่เท่าเทียมกันสองแบบ ดังนั้น ลองพิจารณากรณีหลักๆ ของระบบที่มีความไม่เท่าเทียมกันแบบธรรมดาสองแบบกัน

ตัวอย่างที่ 1- แก้ระบบอสมการ:

คำตอบ: .

ตัวอย่างที่ 2- แก้ระบบอสมการ:

ให้เราแสดงวิธีแก้ปัญหาความไม่เท่าเทียมกันแบบกราฟิก

คำตอบ: .

ตัวอย่างที่ 3. แก้ระบบอสมการ:

ให้เราแสดงวิธีแก้ปัญหาความไม่เท่าเทียมกันแบบกราฟิก

คำตอบ: .

ตัวอย่างที่ 4แก้ระบบอสมการ:

ให้เราแสดงวิธีแก้ปัญหาความไม่เท่าเทียมกันแบบกราฟิก

คำตอบ:ระบบไม่มีวิธีแก้ปัญหา

25. การแก้สมการกำลังสองที่ไม่สมบูรณ์ , ,

สมการกำลังสองเรียกว่าสมการของรูป , และ.

สมการกำลังสองเรียกว่า ไม่สมบูรณ์ถ้ามีอย่างน้อยหนึ่งค่าสัมประสิทธิ์หรือเท่ากับศูนย์

สมการที่ไม่สมบูรณ์แต่ละสมการสามารถแก้ไขได้โดยใช้สูตรทั่วไป แต่การใช้วิธีส่วนตัวจะสะดวกกว่า

กรณีที่ 1

ด้านซ้ายสามารถแยกตัวประกอบได้: เป็นที่ทราบกันดีว่าผลคูณจะเท่ากับศูนย์ก็ต่อเมื่อปัจจัยอย่างน้อยหนึ่งตัวมีค่าเท่ากับศูนย์ เราได้รับ: หรือ ซึ่งเป็นไปตามเงื่อนไขนั้น

บทสรุป:สมการจะมีรากจริงสองตัวเสมอ

ตัวอย่างที่ 1แก้สมการ

สารละลาย: หรือ , .

กรณีที่ 2ถ้า แล้วสมการจะอยู่ในรูปแบบ

แล้ว . เพราะว่าแล้ว.

ถ้า สมการนี้ไม่มีรากที่แท้จริง (ตั้งแต่ )

ถ้า แล้วสมการจะมีรากจำนวนจริงสองตัว

ตัวอย่างที่ 2แก้สมการ

สารละลาย- เนื่องจาก , ดังนั้นสมการนี้จึงไม่มีรากที่แท้จริง

ตัวอย่างที่ 3แก้สมการ

สารละลาย: .

กรณีที่ 3ถ้า และ แล้วสมการจะอยู่ในรูปแบบ

เนื่องจาก , แล้ว , หรือ , ดังนั้นสมการจึงมี สองเท่ากันราก

ตัวอย่างที่ 4แก้สมการ

สารละลาย: .

26. การแก้สมการกำลังสองลดลง

สมการกำลังสองที่ลดลงคือสมการกำลังสอง ซึ่งมีสัมประสิทธิ์นำคือ .

หากต้องการค้นหาราก ให้เลือกกำลังสองที่สมบูรณ์พร้อมตัวแปร x- เราได้รับ:

.

จำนวนนี้เรียกว่าการแบ่งแยกสมการกำลังสองลดลง จำนวนรากที่แท้จริงของสมการขึ้นอยู่กับเครื่องหมายของการแบ่งแยก

ถ้า แล้วสมการนั้นไม่มีรากที่แท้จริง เนื่องจาก

ถ้าอย่างนั้น , , นั่นคือสมการนี้มีรากจริงสองอัน และ .

ความคิดเห็นสูตร จะสะดวกเป็นพิเศษหากค่าสัมประสิทธิ์ p เป็นเลขคู่

ตัวอย่าง.แก้สมการ .

สารละลาย.ตั้งแต่นั้นเป็นต้นมาเพราะฉะนั้น .

แล้ว , .

คำตอบ: , .

27. สูตรเวียตต้าสำหรับสมการกำลังสองรีดิวซ์

ที่ให้มานั้นมีรากที่แท้จริงสองอันและ .

แล้ว ,

ดังนั้นทฤษฎีบทจึงได้รับการพิสูจน์แล้ว ซึ่งเรียกว่าทฤษฎีบทของเวียตตา

ทฤษฎีบท. ถ้า และ เป็นรากของสมการกำลังสองลดรูป แล้วความเท่าเทียมกัน , .

ความเท่าเทียมกันเหล่านี้เรียกว่าสูตรของเวียตตา

ความคิดเห็นสูตรของเวียตต้าก็ใช้ได้เช่นกันหากเป็นสมการ มีรากสังยุคที่ซับซ้อน

ตัวอย่าง.ย่อหน้าก่อนหน้านี้แสดงให้เห็นว่าสมการ มีราก , . แล้ว , .

ตั้งแต่นั้นมา , .

28. การแก้สมการกำลังสอง

เนื่องจากตามคำนิยามของสมการกำลังสอง ทั้งสองข้างของสมการจึงสามารถหารด้วย a ได้ เราได้สมการกำลังสองลดลง ซึ่งในนั้น . จากนั้นสามารถหารากของมันได้โดยใช้สูตร . เราได้รับ:

จำนวนนี้เรียกว่าการแบ่งแยกสมการกำลังสอง (และการแบ่งแยกของตรีโกณมิติกำลังสอง) การแบ่งแยกจะแสดงจำนวนรากจริงของสมการที่กำหนด

ถ้า แล้วสมการ มี สองจำนวนจริงที่ไม่เท่ากันราก และ ().

ถ้า แล้วสมการ มี สองจำนวนจริงที่เท่ากันราก

ถ้า แล้วสมการ ไม่มีรากที่แท้จริง

ความคิดเห็นในกรณีนี้ สมการมีรากคอนจูเกตที่ซับซ้อนสองราก

และ .

ตัวอย่างที่ 1แก้สมการ .

สารละลาย.ตั้งแต่ , (แล้ว), , แล้วก็

ตั้งแต่นั้นเป็นต้นมา .

แล้ว , .

คำตอบ: , .

ตัวอย่างที่ 2แก้สมการ .

สารละลาย.ตั้งแต่ , , , จากนั้น .

เนื่องจาก สมการนี้ไม่มีรากที่แท้จริง

29. การแก้อสมการกำลังสอง

, , ,

ด้วยการแยกแยะเชิงบวก

การลดลงสู่ระบบความไม่เท่าเทียมกันเชิงเส้นสองตัว

การแยกแยะของตรีโกณมิติกำลังสองคือตัวเลข

รากของตรีโกณมิติกำลังสองคือรากของสมการ .

และ และ (หมายถึง )

จากนั้นสามารถแยกย่อยเป็นปัจจัยเชิงเส้นได้: .

เนื่องจาก จากนั้น เราก็สามารถหารด้วยทั้งสองด้านของอสมการแต่ละตัวที่กำลังพิจารณาได้ (ถ้า เครื่องหมายอสมการ (นั่นคือ เครื่องหมาย > หรือ<) сохранится, если , то знак неравенства поменяется на противоположный). В результате получится неравенство одного из видов: , , , - ให้เราพิจารณาวิธีแก้ปัญหาของอสมการเหล่านี้

1) ผลคูณของปัจจัยทั้งสองจะเป็นค่าบวก ถ้าปัจจัยทั้งสองเป็นบวกหรือทั้งสองปัจจัยเป็นลบ ดังนั้น , ถ้า หรือ .

คำตอบของทั้งสองระบบคือคำตอบของอสมการกำลังสองนี้

เพราะ , แล้ว (จากนั้น)

ตั้งแต่นั้นมา (จากนั้น)

คำตอบ:ความไม่เท่าเทียมกัน

มีชุดโซลูชั่นที่สามารถเขียนได้ในรูปหรือหรือในรูป

3) ผลคูณของตัวประกอบสองตัวจะเป็นลบ ถ้าตัวประกอบตัวใดตัวหนึ่งเป็นบวกและอีกตัวเป็นลบ นั่นเป็นเหตุผล , ถ้า หรือ .

ตั้งแต่นั้นมา.

ระบบอสมการนี้ไม่มีทางแก้ได้ เนื่องจากจำนวน x ไม่สามารถน้อยกว่าค่าที่น้อยกว่าของตัวเลขสองตัวและมากกว่าค่าที่ใหญ่กว่าพร้อมกันได้

คำตอบ:ความไม่เท่าเทียมกัน

2) ในทำนองเดียวกัน เราพบว่าความไม่เท่าเทียมกัน มีชุดโซลูชั่นที่สามารถเขียนได้ในรูปหรือในรูปก็ได้

ตัวอย่าง.แก้ปัญหาความไม่เท่าเทียมกัน .

สารละลาย. ลองหารากของตรีโกณมิติกำลังสอง ซึ่งก็คือรากของสมการกัน : ,

, .

เมื่อขยายด้านซ้ายของอสมการนี้ตามสูตร เราจะได้อสมการนั้น .

เนื่องจาก จากนั้นหารทั้งสองข้างของอสมการสุดท้ายด้วย 3 เราจะได้อสมการที่เท่ากัน .

ผลคูณของตัวประกอบสองตัวจะเป็นลบ ถ้าตัวประกอบตัวใดตัวหนึ่งเป็นบวกและอีกตัวเป็นลบ ดังนั้น คำตอบของอสมการสุดท้ายคือคำตอบของระบบอสมการแต่ละระบบ ถ้า หรือ แล้วหรือ

วิธีแก้ปัญหาแบบกราฟิกของระบบจะแสดงไว้ในรูปภาพ (สำหรับระบบแรก รูปภาพจะอยู่ทางด้านซ้าย และสำหรับระบบที่สองทางด้านขวา) จะเห็นได้ว่าระบบที่ 2 ไม่มีวิธีแก้ปัญหา ดังนั้นวิธีแก้ปัญหาของอสมการนี้จึงเป็นเพียงคำตอบของระบบที่ 1 เท่านั้น

คำตอบ:

30. การแก้อสมการกำลังสอง

, , ,

โดยใช้กราฟของฟังก์ชันกำลังสอง

ความคิดเห็นเราสามารถสรุปได้ว่าในอสมการเหล่านี้ทั้งหมด มิฉะนั้น เมื่อคูณอสมการทั้งสองข้างแล้วเปลี่ยนเครื่องหมายของอสมการไปตรงกันข้าม เราก็จะได้อสมการประเภทใดประเภทหนึ่งจากสี่ประเภทที่ระบุ ซึ่งเทียบเท่ากับประเภทนี้

แล้วกราฟของฟังก์ชัน จะมีพาราโบลาซึ่งมีกิ่งก้านชี้ขึ้น ตำแหน่งของพาราโบลานี้สัมพันธ์กับแกน x ขึ้นอยู่กับเครื่องหมายการแบ่งแยกของตรีโกณมิติกำลังสอง มีความเป็นไปได้ 3 กรณี

ข้าว. 1 รูป 2 รูป 3

กรณีที่ 1ถ้า แล้วกำลังสองของตรีโกณมิติจะมีรากจำนวนจริงสองตัว และ , และ . จากนั้นพาราโบลาจะตัดแกนแอบซิสซาที่จุดที่มีแอบซิสซา และ สำหรับความไม่เท่าเทียมกันที่เข้มงวด และ ตัวเลขและแสดงเป็นวงกลมเปิด (ดังรูปที่ 1) สำหรับความไม่เท่าเทียมกันที่ไม่เข้มงวด และ ตัวเลขจะแสดงด้วยวงกลมที่เต็มไป ในกรณีนี้: และไม่มีรากที่แท้จริง จากนั้นพาราโบลาจะไม่มีจุดร่วมกับแกน x (ดูรูปที่ 3) ในกรณีนี้: x แบ่งแกน x ออกเป็น 3 ช่วง (ดูรูปที่ 1) และ

ในทฤษฎีระบบสมการเชิงเส้นและในประเด็นอื่นๆ การใช้แนวคิดเรื่องดีเทอร์มิแนนต์หรือดีเทอร์มิแนนต์จะสะดวกกว่า

ลองพิจารณาตัวเลขสี่ตัวใดๆ ที่เขียนในรูปแบบของตารางสี่เหลี่ยมจัตุรัส (เมทริกซ์) สองตัวในแถว และสองคอลัมน์ในคอลัมน์ ดีเทอร์มิแนนต์หรือดีเทอร์มิแนนต์ที่ประกอบด้วยตัวเลขในตารางนี้ คือตัวเลขที่แสดงดังนี้

ดีเทอร์มิแนนต์ดังกล่าวเรียกว่าดีเทอร์มิแนนต์ลำดับที่สอง เนื่องจากมีการนำตารางสองแถวและสองคอลัมน์มาคอมไพล์ ตัวเลขที่ประกอบเป็นดีเทอร์มิแนนต์เรียกว่าองค์ประกอบของมัน และพวกเขากล่าวว่าองค์ประกอบต่างๆ ทำให้เกิดเส้นทแยงมุมหลักของดีเทอร์มิแนนต์ และองค์ประกอบต่างๆ ประกอบเป็นเส้นทแยงมุมรอง จะเห็นได้ว่าดีเทอร์มิแนนต์มีค่าเท่ากับผลต่างของผลคูณของคู่ขององค์ประกอบที่อยู่บนเส้นทแยงมุมหลักและเส้นทแยงมุมรอง

ตัวอย่างที่ 1 คำนวณปัจจัยกำหนดลำดับที่สองต่อไปนี้:

วิธีแก้ปัญหา ก) ตามนิยามที่เรามี

การใช้ดีเทอร์มิแนนต์ ความเท่าเทียมกัน (66.6), (66.7) และ (66.8) สามารถเขียนใหม่ได้โดยการสลับส่วนต่างๆ ดังต่อไปนี้:

โปรดทราบว่าปัจจัยกำหนดนั้นค่อนข้างจะเรียบเรียงจากค่าสัมประสิทธิ์ของระบบ (66.2)

แท้จริงแล้ว ดีเทอร์มิแนนต์ประกอบด้วยค่าสัมประสิทธิ์ของสิ่งที่ไม่ทราบในระบบนี้ เรียกว่าปัจจัยหลักของระบบ (66.2) ลองเรียกพวกมันว่าปัจจัยกำหนดสิ่งที่ไม่รู้จัก x และ y ตามลำดับ เราสามารถกำหนดกฎต่อไปนี้สำหรับองค์ประกอบของพวกเขา: ค่าดีเทอร์มิแนนต์ของค่าไม่ทราบค่าแต่ละตัวจะได้มาจากค่าปัจจัยหลักหากคอลัมน์ค่าสัมประสิทธิ์ของค่าไม่ทราบค่าในนั้นถูกแทนที่ด้วยคอลัมน์ของคำศัพท์อิสระ (นำมาจากด้านขวามือของ สมการของระบบ)

ตัวอย่างที่ 2 แก้ระบบ (66.12) โดยใช้ดีเทอร์มิแนนต์

สารละลาย. เราเขียนและคำนวณปัจจัยกำหนดหลักของระบบนี้:

ตอนนี้เราแทนที่คอลัมน์ของสัมประสิทธิ์สำหรับ x (คอลัมน์แรก) ด้วยเงื่อนไขอิสระ เราได้ดีเทอร์มิแนนต์สำหรับ x:

ในลักษณะเดียวกับที่เราพบ

จากที่นี่เราได้รับโดยใช้สูตร (66.11)

เรามาถึงวิธีแก้ปัญหาที่เรารู้อยู่แล้ว (1, -1)

ให้เราศึกษาระบบสมการเชิงเส้น (66.2) เมื่อต้องการทำเช่นนี้ ให้เรากลับไปที่ความเท่าเทียมกัน (66.9) และ (66.10) และแยกแยะระหว่างสองกรณี:

ให้ตามที่ระบุไว้แล้ว สูตร (66.11) มอบโซลูชันเฉพาะให้กับระบบ (66.2) ดังนั้น หากปัจจัยกำหนดหลักของระบบแตกต่างจากศูนย์ ระบบก็จะมีคำตอบเฉพาะซึ่งกำหนดโดยสูตร (66.11) ระบบดังกล่าวเรียกว่าแน่นอน

2) ปล่อยให้ตอนนี้ เราจะแยกความแตกต่างออกเป็นสองกรณี ขึ้นอยู่กับค่านิยม

ก) ปัจจัยกำหนดอย่างน้อยหนึ่งตัวแตกต่างจากศูนย์ ดังนั้นระบบ (66.2) จึงไม่มีวิธีแก้ปัญหา แท้จริงแล้ว ยกตัวอย่าง เช่น . ความเท่าเทียมกัน (66.9) ไม่สามารถเป็นที่พอใจสำหรับค่าใดๆ เนื่องจากความเท่าเทียมกันนี้ได้มาจากระบบ (66.2) ดังนั้นระบบจึงไม่มีวิธีแก้ปัญหา ระบบดังกล่าวเรียกว่าไม่สอดคล้องกัน

b) ดีเทอร์มิแนนต์ทั้งสองมีค่าเท่ากับศูนย์ ความเท่าเทียมกัน (66.9) และ (66.10) มีความพึงพอใจเหมือนกัน และไม่สามารถใช้ศึกษาระบบ (66.2) ได้

ขอให้เราพิสูจน์ว่าหากค่าสัมประสิทธิ์ของสิ่งที่ไม่ทราบในระบบอย่างน้อยหนึ่งค่า (66.2) แตกต่างจากศูนย์ ระบบจะมีคำตอบจำนวนอนันต์ หากต้องการดูสิ่งนี้ สมมติว่า เช่น ว่า จากความสัมพันธ์

และจากการบันทึกสมการที่สองของระบบ (66.2) แทนการแสดงออกของสัมประสิทธิ์ลงไป

เราจะพบว่ามันแตกต่างจากสมการแรกด้วยปัจจัยเท่านั้น กล่าวคือ โดยพื้นฐานแล้วมันเกิดขึ้นพร้อมกัน (เทียบเท่ากับมัน) ระบบ (66.2) ถูกลดเหลือเพียงสมการแรกและกำหนดจำนวนคำตอบที่ไม่สิ้นสุด (ระบบดังกล่าวเรียกว่าไม่แน่นอน) โดยหลักการแล้ว กรณีที่รุนแรงเช่นนี้ก็เป็นไปได้เช่นกัน เช่น ความเท่าเทียมกันของสัมประสิทธิ์ทั้งหมดสำหรับค่าที่ไม่รู้จักถึงศูนย์ (ซึ่งอาจเกิดขึ้นได้เมื่อศึกษาระบบที่มีค่าสัมประสิทธิ์ตัวอักษร) ระบบดังกล่าว

ปัจจัยกำหนดทั้งหมดมีค่าเท่ากับศูนย์ อย่างไรก็ตาม มันไม่สอดคล้องกันสำหรับ หรือ

เรามาสรุปผลการศึกษาระบบสมการเชิงเส้น (66.2) กัน ระบบดังกล่าวมีสามประเภท:

1) ถ้า ระบบถูกกำหนดและมีวิธีแก้ปัญหาเฉพาะ (66.11)

2) ถ้า แต่แล้วระบบไม่สอดคล้องกันและไม่มีทางแก้ไข

3) หากค่าสัมประสิทธิ์ของสิ่งที่ไม่ทราบอย่างน้อยหนึ่งค่าแตกต่างจากศูนย์) ระบบจะไม่แน่นอนและมีคำตอบจำนวนอนันต์ (ลดลงเหลือหนึ่งสมการ)

ดีเทอร์มิแนนต์มีค่าเท่ากับศูนย์

หมายถึงสัดส่วนขององค์ประกอบในเส้นของมัน (และในทางกลับกัน):

ด้วยเหตุนี้ คุณลักษณะที่แยกแยะระบบเชิงเส้นประเภทต่างๆ (แน่นอน ไม่แน่นอน ไม่สอดคล้องกัน) สามารถกำหนดได้ในแง่ของสัดส่วนระหว่างค่าสัมประสิทธิ์ของระบบ (โดยไม่ต้องใช้ปัจจัยกำหนด)

เงื่อนไขจึงถูกแทนที่ด้วยข้อกำหนดของสัดส่วน (ไม่ใช่สัดส่วน) ของสัมประสิทธิ์สำหรับสิ่งที่ไม่ทราบ:

ในกรณีนี้ ไม่เพียงแต่ค่าสัมประสิทธิ์ของสิ่งแปลกปลอมจะกลายเป็นสัดส่วนเท่านั้น แต่ยังรวมถึงเงื่อนไขอิสระด้วย:

(สัดส่วนเหล่านี้ได้มาจาก (67.6)) ตัวอย่างเช่น หาก DO จากนั้นจาก (66.6) เราจะเห็นว่าเงื่อนไขอิสระไม่สัดส่วนกับสัมประสิทธิ์ของสิ่งที่ไม่ทราบ ดังนั้น:

1) หากค่าสัมประสิทธิ์ของสิ่งที่ไม่ทราบไม่เป็นสัดส่วน:

แล้วระบบก็แน่นอน

2) หากค่าสัมประสิทธิ์ของสิ่งที่ไม่รู้จักเป็นสัดส่วน แต่เงื่อนไขอิสระไม่สมส่วนกับสิ่งเหล่านั้น:

แล้วระบบไม่สอดคล้องกัน

3) หากค่าสัมประสิทธิ์ของสิ่งที่ไม่ทราบและเงื่อนไขอิสระเป็นสัดส่วน:

แล้วระบบก็ไม่แน่นอน

การศึกษาระบบสมการเชิงเส้นโดยไม่ทราบค่าสองตัวช่วยให้สามารถตีความทางเรขาคณิตได้ง่าย สมการเชิงเส้นใดๆ ในแบบฟอร์ม (38.4) กำหนดเส้นตรงบนระนาบพิกัด สมการของระบบ (66.2) จึงสามารถตีความได้ว่าเป็นสมการของเส้นตรงสองเส้นบนระนาบ และปัญหาในการแก้ระบบคือปัญหาการหาจุดตัดกันของเส้นเหล่านี้

เป็นที่ชัดเจนว่าเป็นไปได้สามกรณี: 1) เส้นทั้งสองนี้ตัดกัน (รูปที่ 61, a); กรณีนี้สอดคล้องกับระบบบางอย่าง 2) เส้นตรงทั้งสองนี้ขนานกัน (รูปที่ 61, b) กรณีนี้สอดคล้องกับระบบที่เข้ากันไม่ได้

3) เส้นตรงเหล่านี้ตรงกัน (รูปที่ 61, c) กรณีนี้สอดคล้องกับระบบที่ไม่แน่นอน: แต่ละจุดของเส้น "ให้สองครั้ง" จะเป็นวิธีแก้ปัญหาของระบบ

ตัวอย่างที่ 3 สำรวจระบบเชิงเส้น:

วิธีแก้ปัญหา ก) มาเขียนและคำนวณปัจจัยกำหนดหลักของระบบนี้กัน