Основные законы электрических цепей. Эта формула выражает закон сохранения энергии для электрической цепи Закон сохранения энергии для замкнутой электрической цепи

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка. Пусть имеется некоторый участок цепи (рис. 1.7), крайние точки которого обозначены буквами а и b. Пусть ток I течет от точки а к точке b (от более высокого потенциала к более низкому). Следовательно, потенциал точки а(φ a) выше потенциала точки b(φ b) на значение, равное произведению тока I на сопротивление R : φ a =φ b +IR.

Рис. 1.7

В соответствии с определением напряжение между точками а и b U ab = φ a - φ b .

Следовательно, U ab =IR , т.е. напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на значение этого сопротивления.

В электротехнике разность потенциалов на концах сопротивления принято называть либо напряжением на сопротивлении, либо падением напряжения.

Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

Рассмотрим вопрос о напряжении на участке цепи, содержащей кроме сопротивления R , ЭДС Е (рис. 1.8, а , б). Найдем разность потенциалов (напряжение) между точками а и с для этих участков. По определению U a с = φ a - φ с . Выразим потенциал точки а через потенциал точки с . При перемещении от точки с к точке b встречно направлению ЭДС Е (см. рис. 1.8, а ) потенциал точки b оказывается меньше, чем потенциал точки с , на значение ЭДС Е: φ b = φ c -E . При перемещении от точки с к точке b согласно направлению ЭДС Е (рис.1.8, б ) потенциал точки b больше, чем потенциал точки с ,на значение ЭДС: φ b = φ c +E .

Так как ток течет от более высокого потенциала к более низкому, в обеих схемах потенциал точки а выше потенциала точки b на величину падения напряжения на сопротивлении R а = φ b +IR .

а) б )

Рис. 1.8

Таким образом, для рис. 1.8, а :

(1.1)

для рис. 1.8, б:

(1.2)

Положительное направление напряжения U a с показывают стрелкой от а к с . Согласно определению, U са = φ с - φ а, поэтому U ас =-U са, т.е. изменение чередования индексов равносильно изменению знака этого напряжения. Следовательно, напряжение может быть как положительной величиной, так и отрицательной.

Закон Ома для участка цепи, не содержащего ЭДС Е, устанавливает связь между током и напряжением на этом участке. Применительно к рис.1.7

Или . (1.3)

Закон Ома для участка цепи, содержащего источник ЭДС Е , позволяет найти ток этого участка по известной разности потенциалов (φ a - φ с) на концах этого участка цепи и имеющейся на участке ЭДС Е.

Так, из уравнения (1.1) для схемы рис.1.8, а следует

.

Из уравнения (1.2) для схемы рис.1.8, б следует:

.

В общем случае

. (1.4)

Все электрические цепи подчиняются первому и второму законам Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко:

1) алгебраическая сумма токов, подтекающих к какому-либо узлу схемы, равна нулю;

2) сумма подтекающих клюбому узлу токов равна сумме утекающихот этого узла токов.

Рис. 1.9

Применительно к рис.1.9, если подтекающие токи к узлу считать положительными, а вытекающие - отрицательными, то согласно первой формулировке I 1 -I 2 -I 3 -I 4 = 0; согласно второй I 1 =I 2 +I 3 +I 4 . Физически первый закон Кирхгофа означает, что движение электрических зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются. В противном случае изменялись бы потенциалы узлов и токи в ветвях.

Второй закон Кирхгофа также можно сформулироватьдвояко:

1) алгебраическая сумма падений напряженияв любом замкнутом контуре равна алгебраической сумме ЭДС, входящих в данный контур:

, (1.5)

где m - число резистивных элементов; п – число ЭДС в контуре (в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений вдоль любого замкнутого контура

где т - число элементов контура.

Второй закон Кирхгофа является следствием равенства нулю циркуляции вектора напряженности электрического поля вдоль любого замкнутого контура в безвихревом поле.

Законы Кирхгофа справедливы длялинейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

При протекании токов по сопротивлениям в них выделяется теплота. На основании закона сохранения энергии количество теплоты, выделяющееся в единицу времени в сопротивлениях цепи, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I , протекающего через источник ЭДС E , совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени, равную EI , и произведение ЕI входит в уравнение энергетического баланса с положительным знаком. Если же направление тока I встречно ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение ЕI войдет в уравнение энергетического баланса с отрицательным знаком. Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

. (1.7)

В случае питания электрической цепи не только источниками ЭДС, но и источниками тока, при составлении уравнения энергетического баланса необходимо учесть и энергию, доставляемую источниками тока. Предположим, что к узлу а схемы подтекает ток J от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна U а b J. Общий вид уравнения энергетического баланса:

1.4. Эквивалентные преобразования пассивных участков

электрической цепи

При наличии в цепи только одного источника энергии в большинстве случаев цепь можно рассматривать как смешанное соединение источника и приемников энергии, т.е. нескольких резисторов, соединенных между собой параллельно, включенных последовательно с другими сопротивлениями (рис.1.10). Расчет смешанного соединения целесообразно начинать с определения эквивалентной проводимости параллельного соединения, а на основании этой проводимости легко найти обратную величину - эквивалентное сопротивление разветвления R . Для схемы, приведенной на рис. 1.10, а :

После замены разветвления эквивалентным сопротивлением (рис. 1.10, б ) цепь можно рассчитывать как последовательное соединение; ток в неразветвленной части цепи:

а) б )

Рис. 1.10

В ряде случаев расчет сложной схемы, состоящей из линейных сопротивлений, существенно упрощается, если в этой схеме заменить группу сопротивлений другой эквивалентной группой, в которой сопротивления соединены иначе, чем в замещаемой группе. Взаимная эквивалентность двух групп сопротивлений выразится в том, что после замены электрические условия во всей остальной схеме не изменятся.

Рассмотрим преобразование звезды в треугольник и треугольника в звезду. Соединение трех сопротивлений, имеющих вид трехлучевой звезды, называют звездой (рис. 1.11), а соединение трех сопротивлений так, что они образуют собой стороны треугольника, - треугольником (рис.1.12). Обозначим токи, подтекающие к узлам 1 , 2 , 3 , через I 1 , I 2 и I 3 . Выведем формулы преобразования. С этой целью выразим токи I 1 , I 2 и I 3 в звезде и в треугольнике через разности потенциалов точек и соответствующие проводимости.

Рис. 1.11

Для звезды:

, (1.9)

; ; , (1.10)

гдеφ о, φ 1 , φ 2, φ 3 - потенциалы в точках 0 , 1 , 2 , 3 соответственно. Подставим (1.10) в (1.9) и найдем φ 0 :

. (1.11)

Подставим j о в выражение (1.10) для тока I 1:

. (1.12)

С другой стороны, для треугольника в соответствии с обозначениями на рис. 1.12

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Закон сохранения энергии

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σ i j̅ i ×E̅ i . ΔV i .

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt S S̅ × n̅ . dA,

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

Это закон сохранения энергии в электродинамике .

Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

Закон сохранения энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

Математическая формулировка

Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

\[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Размер: px

Начинать показ со страницы:

Транскрипт

1 Тренировочный минимум по физике ФИЗИКА Тема Закон сохранения энергии в электрических цепях ВОПРОСЫ Рассматриваем электрические схемы, которые могут содержать батареи, резисторы, конденсаторы и катушки индуктивности Формулы для энергии конденсатора и катушки индуктивности Сформулировать закон сохранения энергии для электрической цепи Как определяется работа батареи? Когда она положительна? Когда она отрицательна? 4 На каких электрических элементах выделяется теплота? 5 Сформулировать Закон Джоуля-Ленца 6 Как определяется теплота Q, выделяющаяся на резисторе сопротивлением за любое время, если через него протекает ток I t? 7 Какой формулой определяется скорость изменения энергии конденсатора? 8 Какой формулой определяется скорость изменения энергии катушки индуктивности? ЗАДАЧИ Всевозможные задачи для схемы класса 5 рис Задача В схеме, показанной на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время t, а затем размыкают) Чему равен ток через катушку сразу после размыкания ключа?) Какую работу совершит источник за все время опыта?) Какое количество теплоты выделится в схеме за все время опыта? 4) Какое количество теплоты выделится в схеме за время t? Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за всё время опыта (те за время, пока ключ был замкнут и за время, пока ключ был разомкнут) в схеме выделилось количество теплоты Q Найдите время Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за время, пока ключ был замкнут, и за время, пока ключ был разомкнут, в схеме выделились равные количества теплоты Какой заряд протёк через источник за время, пока ключ был замкнут? Какое количество теплоты выделилось в схеме за всё время опыта?

2 Задача 4 В электрической схеме, приведённой на рис, все элементы идеальные, ключ K разомкнут Индуктивность катушки, сопротивление резистора, ЭДС батареи Ключ K замыкают За первые секунд после замыкания ключа K батарея совершила работу на 5% меньшую, чем работа, которую она совершила за последующие секунд) Определить время) Какое количество теплоты выделится в схеме за время 4 после замыкания ключа K? Задача 5 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что после размыкания ключа в цепи выделилось в два раза больше теплоты, чем при замкнутом ключе Найти отношение заряда, протёкшего через источник при замкнутом ключе, к заряду, протёкшему через резистор после размыкания ключа Задача 6 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что заряд, протёкший через катушку при замкнутом ключе, в 4 раза больше заряда, протёкшего через катушку после размыкания ключа Определить время Найти отношение теплоты, выделившейся в цепи после размыкания ключа, к теплоте, выделившейся в цепи при замкнутом ключе Задача 7 Электрическая цепь состоит из идеальной батарейки с ЭДС, катушки индуктивностью, конденсатора ёмкостью C и резистора с неизвестным сопротивлением (рис справа) Ключ K замыкают на время, а затем размыкают За время, пока ключ был замкнут, через резистор протёк заряд q) Какое количество теплоты выделилось в цепи за время, пока ключ был замкнут?) Какое количество теплоты выделилось в цепи после размыкания ключа? Схемы - классов Задача 8 В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально не заряжен, ключ K разомкнут Ключ K замыкают, а затем размыкают в момент, когда напряжение на конденсаторе становится равным Известно, что пока ключ K был замкнут, через резистор сопротивлением протёк заряд 6 C Сколько теплоты выделилось в схеме, пока ключ K был замкнут? Задача 9 Какое количество теплоты выделится на резисторе в схеме, изображённой на рис справа, после перемещения ключа K из положения в положение? Внутренним сопротивлением батареи пренебречь Задача В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально заряжен до напряжения, ключ K разомкнут Ключ K замыкают) Определить изменение энергии конденсатора) Определить работу, которую совершит батарея? В каком состоянии будет находиться батарея?) Какое количество теплоты выделится в схеме? 4) Чему равна наибольшая скорость изменения энергии конденсатора (наибольшая по модулю)?

3 Задача В электрической схеме, изображённой на рис справа, в начальный момент ключ K замкнут После размыкания ключа на резисторе выделяется количество теплоты Q) Какое количество теплоты выделится на резисторе?) Чему равна ЭДС батареи? Сопротивления, и и индуктивность катушки известны Внутренним сопротивлением батареи пренебречь Задача В схеме, изображенной на рис слева, при разомкнутом ключе K конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U Ключ K замыкают) Чему будет равен ток в цепи сразу после замыкания ключа K (указать направление)?) Определить скорость изменения энергии конденсатора ёмкостью C сразу после замыкания ключа K?) Определить величину и знак заряда левой обкладки конденсатора ёмкостью C в установившемся режиме? 4) Какой заряд протечёт через резистор сопротивлением (указать направление)? 5) Найти изменение энергии конденсатора ёмкостью C? 6) Какое количество теплоты выделится в схеме? 7) Какое количество теплоты выделится на резисторе сопротивлением? Задача В цепи, показанной на рис справа, конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U (рис справа) Одноимённо заряженные обкладки соединены резистором сопротивлением Ключ K замыкают на некоторое время, а затем размыкают) Найти ток в цепи сразу после замыкания ключа K (указать направление)) Какое количество теплоты выделилось в цепи, если в момент размыкания ключа K ток в цепи был в раза меньше начального? Задача 4 В цепи, показанной на рис слева, все элементы идеальные В начальный момент времени ключи K и K разомкнуты, конденсаторы не заряжены Ключи одновременно замыкают) Найти начальный ток через каждую из батарей) Определить заряды конденсаторов в установившемся состоянии) Найти суммарную работу батарей 4) Какое количество теплоты выделится во всей схеме после замыкания ключей? Считать, что и Задача 5 Электрическая цепь состоит из батарейки с ЭДС и внутренним сопротивлением r, конденсатора ёмкостью C и резистора сопротивлением 5r Ключ K замыкают, а затем размыкают в момент, когда токи через конденсатор и резистор сравниваются по величине) Какую мгновенную мощность развивает источник непосредственно перед размыканием ключа?) Какое количество теплоты выделится в схеме после размыкания ключа?

4 Задача 6 В электрической схеме, представленной на рис слева, все элементы идеальные Ключ K первоначально разомкнут, токов в цепи нет Ключ K замыкают Известно, что за время пока в цепи устанавливались токи, в цепи выделилось количество теплоты Q Определить величины зарядов, протёкших через каждую из катушек за это время Задача 7 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис*) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, в цепи выделилось количество теплоты Q, а после размыкания ключа в цепи выделилось количество Q) Найдите ток через катушку в момент размыкания ключа) Найдите заряд, протекший через катушку за время, пока ключ был замкнут Задача 8 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис слева) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, через источник протек заряд q, а в катушке запаслась энергия W) Найти количество теплоты, выделившееся в цепи, пока ключ был замкнут) Какой заряд протёк через катушку при замкнутом ключе? Задача 9 В электрической схеме, предсталенной на рис справа, ключ K замкнут Ключ K размыкают После этого батарея с ЭДС совершила работу A, а количество теплоты, выделившееся в цепи, равно Q) Найти ёмкость конденсатора C) Найти индуктивность катушки ЭДС батарей и сопротивления резисторов считать заданными Считать, что Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена диэлектрическая пластина, занимающая половину объёма конденсатора (рис слева) Диэлектрическая проницаемость диэлектрика равна Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину? Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена проводящая пластина, занимающая половину объёма конденсатора (рис справа) Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину?

5 Энергия конденсатора: W C CU qu q C ОТВЕТЫ ВОПРОСЫ I ФI Ф Энергия катушки: W, где Ф магнитный поток, пронизывающий катушку Работа A Б всех батарей, включенных в цепь, идёт на выделение теплоты Q в электрической схеме и на изменение W энергии этой схемы: AБ Q W Энергия схемы равна сумме энергий всех конденсаторов и всех катушек индуктивности AБ q*, где q * модуль протёкшего заряда через батарею Работа батареи положительна (ставится знак «+»), если батарейка находится в рабочем режиме, и отрицательна (ставится знак), если батарейка находится в состоянии перезарядки 4 Только на резисторах 5 Если через резистор сопротивлением протекает постоянный ток I, то количество теплоты, выделяющееся U за время, равно Q I U I, где U I U t 6 Q I t t t U t I tt, где суммирование ведётся по всем малым отрезкам времени t за промежуток времени W t U t I t P t, где знак «+» ставится, если конденсатор заряжается, а знак ставится, если 7 C C C C конденсатор разряжается 8 W t U t I t, где U t t I t I t ЗАДАЧИ) t) t Задача t) t t 4) t Задача Задача Q 4)) 4) 4C) 6 4) Задача 4 Задача 5 8)) Q4 5 5 Задача 6 Задача 7) 8 Q) 4 q Q) Q q) Q C Задача 8 Задача 9 4 C 9 C Задача C, батарея будет находиться в состоянии перезарядки) C q C, наибольшая скорость изменения энергии конденсатора будет в момент сразу после замыкания ключа

6 Q) Q Q) Задача Задача U) (против часовой стрелки) U) (знак «минус» показывает, что энергия конденсатора уменьшается в данный момент времени)) 4 CU 4) 9 CU (против часовой стрелки) 4 5) 45 CU 6) 7 8 CU 7) 9 4 CU) U) CU Задача Задача 4) I и I 7 5) qc C, qc C и q C C 6 74) AБ C) Q C 6 Задача 5 5)) 7r 98 C Задача 6 Q 9 q 4 8 и Q q 4 Q))) q W) Q Q Q q W A 8) C) Q A 9 4)) Aмех Aмех 8 C) C) Q 8 Q C C Задача 7 Задача 8 Задача 9 Задача Задача Составитель: МА Пенкин преподаватель ФЗФТШ при МФТИ


И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Конденсатор В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и конденсаторов.

И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Катушка В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и катушек

И. В. Яковлев Материалы по физике MathUs.ru Содержание Соединения конденсаторов 1 Всероссийская олимпиада школьников по физике................... 3 2 Московская физическая олимпиада...........................

005-006 уч. год., кл. Физика. Электростатика. Законы постоянного тока. Контрольные вопросы. По какой причине силовые линии электрического поля не могут пересекаться?. В двух противоположных вершинах квадрата

И. В. Яковлев Материалы по физике MathUs.ru Содержание Диод и конденсаторы 1 Идеальный диод...................................... 1 2 Неидеальный диод..................................... 2 1 Идеальный

И. В. Яковлев Материалы по физике MathUs.ru Электромагнитные колебания Задача 1. (МФО, 2014, 11) Заряженный конденсатор начинает разряжаться через катушку индуктивности. За две миллисекунды его электрический

5. Электрические колебания Вопросы. Дифференциальное уравнение, описывающее свободные колебания заряда конденсатора в колебательном контуре, имеет вид Aq + Bq = 0, где A и B известные положительные постоянные.

Методика обучения решению разноуровневых задач на примере темы Конденсаторы. От простого к сложному. Сокалина Александра Николаевна МБОУ СОШ 6 Линия 1 Актуализация знаний Конденсатор; Емкость конденсатора

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Пусть через катушку протекает электрический ток I, изменяющийся со временем. Переменное магнитное поле тока I порождает вихревое электрическое поле,

Задания А24 по физике 1. На графике показана зависимость от времени силы переменного электрического тока I, протекающего через катушку индуктивностью 5 мгн. Чему равен модуль ЭДС самоиндукции, действующей

Занятие 8. Колебательный контур. Сохранение энергии. 1. В идеальном колебательном контуре максимальный ток в цепи равен I 0. Найдите максимальный заряд на конденсаторе с ёмкостью C, если индуктивность

И. В. Яковлев Материалы по физике MathUs.ru Подвижная пластина Задача 1. (МФТИ, 2004) В схеме, представленной на рисунке, батарея с постоянной ЭДС E подключена через резистор к двум проводящим одинаковым

Потенциал 1.60. В однородном электрическом поле с напряженностью Е = 1 кв/м перемещают заряд q = 50 нкл на расстояние l = 12 см под углом = 60 0 к силовым линиям. Определите работу А поля при перемещении

С1.1. На фотографии изображена электрическая цепь, состоящая из резистора, реостата, ключа, цифровых вольтметра, подключенного к батарее, и амперметра. Используя законы постоянного тока, объясните, как

εдемонстрационный вариант ЕГЭ 2019 г. задание 18. Электрическая цепь на рисунке состоит из источника тока с ЭДС ε и внутренним сопротивлением r и внешней цепи из двух одинаковых резисторов сопротивлением

В схеме на рисунке сопротивление резистора и полное сопротивление реостата равны R, ЭДС батарейки равна E, её внутреннее сопротивление ничтожно (r = 0). Как ведут себя (увеличиваются, уменьшаются, остаются

14. ЭЛЕКТРОЕМКОСТЬ. КОНДЕНСАТОРЫ 14.1 Что называется электроемкостью уединенного проводника? 14.2 В каких единицах измеряется электроемкость? 14.3 Как вычисляется электроемкость уединенной сферы, проводящего

Решения и критерии оценивания Задача 1 Колесо обозрения радиусом R = 60 м вращается с постоянной угловой скоростью в вертикальной плоскости, совершая полный оборот за время T = 2 мин. В момент, когда пол

Колебательный контур состоит из катушки индуктивности и конденсатора. В нём наблюдаются гармонические электромагнитные колебания с периодом Т = 5 мс. В начальный момент времени заряд конденсатора максимален

Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-техническиго института (МФТИ). Нелинейные элементы в электрических цепях В статье на конкретных

Олимпиада «Физтех» по физике 217 Класс 11 Билет 11-3 Шифр 1. На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см.

Занятие 5. Конденсаторы.. Как изменится емкость плоского воздушного конденсатора, если площадь обкладок уменьшить в раза, а расстояние между ними увеличить в раза?. Проводящий шар с зарядом q имеет потенциал

Физика 15 Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-технического института (МФТИ), член редколлегии журнала «Квант» Переходные процессы

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля. Самоиндукция является частным случаем электромагнитной индукции. Оказывается,

На рисунке показана цепь постоянного тока. Внутренним сопротивлением источника тока можно пренебречь. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (

Домашнее задание по теме: «Электрические колебания» Вариант. В колебательном контуре индуктивность катушки L = 0, Гн. Величина тока изменяется по закону I(t) = 0,8sin(000t + 0,3), где t время в секундах,

«ЗАКОНЫ ПОСТОЯННОГО ТОКА». Электрическим током называют упорядоченное направленное движение заряженных частиц. Для существования тока необходимы два условия: Наличие свободных зарядов; Наличие внешнего

Занятие 19 Постоянный ток. Соединения проводников Задача 1 Перенос вещества происходит в случае прохождения электрического тока через: 1) Металлы и полупроводники 2) Полупроводники и электролиты 3) Газы

РАБОТА 4 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПИ, СОДЕРЖАЩЕЙ РЕЗИСТОР И КОНДЕНСАТОР Цель работы: изучение закона изменения напряжения при разрядке конденсатора, определение постоянной времени R-цепи и

Работа электрического тока, мощность, закон Джоуля Ленца 1. Чему равно время прохождения тока силой 5 А по проводнику, если при напряжении на его концах 120 В в проводнике выделяется количество теплоты,

Электрические колебания Примеры решения задач Пример В схеме изображенной на рисунке ключ первоначально находившийся в положении в момент времени t переводят в положение Пренебрегая сопротивлением катушки

Физика. 0 класс. Демонстрационный вариант (90 минут) Диагностическая тематическая работа по подготовке к ЕГЭ по ФИЗИКЕ Физика. 0 класс. Демонстрационный вариант (90 минут) Часть К заданиям 4 даны четыре

Олимпиада «Физтех» по физике 7 Класс Билет -3 Шифр (заполняется секретарём) На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок прикрепленный к упругой невесомой и достаточно длинной

Электродинамика 1. При подключении резистора с неизвестным сопротивлением к источнику тока с ЭДС 10 В и внутренним сопротивлением 1 Ом напряжение на выходе источника тока равно 8 В. Чему равна сила тока

Физика. 0 класс. Демонстрационный вариант 3 (90 минут) Диагностическая тематическая работа 3 по подготовке к ЕГЭ по ФИЗИКЕ по теме «Электродинамика» (электростатика, постоянный ток и магнитное поле тока)

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА И БАТАРЕИ КОНДЕНСАТОРОВ Выполнил

Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5 мм. Зная, что контур резонирует на длину волны 630 м,

Ёмкость. Конденсаторы Вариант 1 1. Определите радиус шара, обладающего ѐмкостью 1 пф. 3. При введении в пространство между пластинами заряженного воздушного конденсатора диэлектрика напряжение на конденсаторе

И. В. Яковлев Материалы по физике MthUs.ru Правила Кирхгофа В статье «ЭДС. Закон Ома для полной цепи» мы вывели закон Ома для неоднородного участка цепи (то есть участка, содержащего источник тока): ϕ

С1.1. Около небольшой металлической пластины, укрепленной на изолирующей подставке, подвесили на шелковой нити легкую металлическую незаряженную гильзу. Когда пластину подсоединили к клемме высоковольтного

1 Государственное бюджетное общеобразовательное учреждение Средняя общеобразовательная школа 447 Санкт-Петербург, Курортный район, п. Молодежное Решение задач уровня «С» ЕГЭ по физике «Расчет сложных электрических

Отложенные задания (25) В области пространства, где находится частица с массой 1 мг и зарядом 2 10 11 Кл, создано однородное горизонтальное электрическое поле. Какова напряжённость этого поля, если из

Электричество и магнетизм, часть 2 1. Конденсатор колебательного контура подключен к источнику постоянного напряжения. Графики и представляют зависимость от времени t физических величин, характеризующих

18.Электродинамика (установление соответствия между графиками и физическими величинами между физическими величинами) 1.Конденсатор, на который подано напряжение U, зарядился до максимального заряда q,

Мастер-класс «Электродинамика. Постоянный ток. Работа и мощность тока». 1. По проводнику течёт постоянный электрический ток. Величина заряда, проходящего через проводник, возрастает с течением времени

Задание 1. Установите соответствие между физическими величинами, описывающими протекание постоянного тока через резистор, и формулами для их расчёта. В формулах использованы обозначения: R сопротивление

Лекц ия 26 Закон Ома для цепи переменного тока Вопросы. Индуктивность и емкость в цепи переменного тока. Метод векторных диаграмм. Закон Ома для цепи переменного тока. Резонанс в последовательной и параллельной

1. Два положительных заряда q 1 и q 2 находятся в точках с радиус-векторами r 1 и r 2. Найти отрицательный заряд q 3 и радиус-вектор r 3 точки, в которую его надо поместить, чтобы сила, действующая на

С1.1. На рисунке приведена электрическая цепь, состоящая из гальванического элемента, реостата, трансформатора, амперметра и вольтметра. В начальный момент времени ползунок реостата установлен посередине

Электростатика Закон Кулона F 4 r ; F r r 4 r где F - сила взаимодействия точечных зарядов q и q ; - E диэлектрическая проницаемость среды; Е напряженность электростатического поля в вакууме; Е напряженность

Решения задач заключительного этапа олимпиады «Высшая проба» по электронике, 04/05 учебный год класс Для измерения силы тока и падения напряжения в личных цепях электронных схем применяют амперметры и

С1 «ПОСТОЯННЫЙ ТОК» На рисунке показана электрическая цепь, содержащая источник тока (с отличным от нуля внутренним сопротивлением), два резистора, конденсатор, ключ К, а также амперметр и идеальный вольтметр.

Региональная контрольная работа по физике (профильный уровень). СПЕЦИФИКАЦИЯ Каждый вариант работы состоит из двух частей и включает в себя 5 заданий, различающихся формой и уровнем сложности. Часть 1

1 Постоянный электрический ток Справочные сведения. ОПРЕДЕЛЕНИЕ СИЛЫ ТОКА Пусть через некоторую поверхность, площадь которой S, перпендикулярно ей, за время проходит заряд q. Тогда силой тока называется

Вариант 1 При выполнении заданий части 1 запишите номер выполняемого задания, а затем номер выбранного ответа или ответ. Единицы физических величин писать не нужно. 1. По проводнику течѐт постоянный электрический

ДА Ивашкина, «Расчет параметров процессов, происходящих в цепях постоянного тока, содержащих катушки индуктивности» «Физика Приложение к газете «Первое сентября»», 9/00 г, стр 4-9 К статье добавлены полные

ЗАДАНИЯ, РЕШЕНИЯ И КРИТЕРИИ ОЦЕНКИ ВТОРОГО ЭТАПА ОЛИМПИАДЫ ПО ЭЛЕКТРОНИКЕ ДЛЯ ШКОЛЬНИКОВ КЛАСС.. При замыкании батареи элементов на сопротивление 9 Ом в цепи течет ток А. Какую максимальную полезную мощность

МИНИСТЕРСТВО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКОГО КРАЯ ГОУ СПО "Минераловодский колледж железнодорожного транспорта" С.А. Иванская ЭЛЕКТРОТЕХНИКА Методические рекомендации по освоению теоретического материала и

ЗАДАЧИ С4 Тема: «Электродинамика» Полное решение задачи должно включать законы и формулы, применение которых необходимо и достаточно для решения, а также математические преобразования, расчеты с численным

) На рисунке показано расположение трёх неподвижных точечных электрических зарядов q, q и 3q. Результирующая кулоновская сила, действующая на заряд 3q, q q 3q r r) направлена вправо) направлена влево

Электричество и магнетизм Электростатика Электростатика - это раздел электродинамики в котором изучаются свойства и взаимодействия неподвижных электрически заряженных тел. При решении задач на электростатику

Нурушева Марина Борисовна старший преподаватель кафедры физики 023 НИЯУ МИФИ Электрический ток Электрический ток это направленное (упорядоченное) движение заряженных частиц. Условия существования электрического

Постоянный электрический ток. Сила тока Постоянный электрический ток. Напряжение Закон Ома для участка цепи Электрическое сопротивление. Удельное сопротивление вещества Электродвижущая сила. Внутреннее

Минимум по физике для учащихся 10-х классов за 2 полугодие. Учитель физики - Турова Мария Васильевна e-mail: [email protected] Список литературы: 1. Учебник физики 10 класс. Авторы: Г.Я.Мякишев, Б.Б.

ЗАДАЧИ С1 Темы: все разделы общей физики от «Механики» до «Квантовой физики» В задачах С1 следует записать развернутый ответ, поясняющий физические процессы, описанные в задаче, и ход ваших рассуждений.

Олимпиада «Курчатов» 016 17 учебный год Заключительный этап 11 класс Задача 1 (5 баллов) Небольшая шайба массой m скатывается с вершины гладкой горки массой M и высотой H. Горка находится на гладкой поверхности.

Колебания. Лекция 3 Генератор переменного тока Для пояснения принципа действия генератора переменного тока рассмотрим сначала, что происходит при вращении плоского витка провода в однородном магнитном

Всеобщий закон природы. Следовательно, он применим в том числе, и к электрическим явлениям. Рассмотрим два случая превращения энергии в электрическом поле:

  1. Проводники являются изолированными ($q=const$).
  2. Проводники соединены с источниками тока при этом не изменяются их потенциалы ($U=const$).

Закон сохранения энергии в цепях с постоянными потенциалами

Допустим, что имеется система тел, которая может включать в себя как проводники, так и диэлектрики. Тела системы могут совершать малые квазистатические перемещения. Температура системы поддерживается постоянной ($\to \varepsilon =const$), то есть тепло подводится к системе, или отводится от нее при необходимости. Диэлектрики, входящие в систему будем считать изотропными, плотность их положим постоянной. В этом случае доля внутренней энергии тел, которая не связана с электрическим полем изменяться не будет. Рассмотрим варианты превращений энергии в подобной системе.

На любое тело, которое находится в электрическом поле, действуют пондемоторные силы (силы, действующие на заряды внутри тел). При бесконечно малом перемещении пондемоторные силы выполнят работу $\delta A.\ $Так как тела перемещаются, то изменение энергии dW. Так же при перемещении проводников изменяется их взаимная емкость, следовательно, для сохранение потенциала проводников неизменным, необходимо изменять заряд на них. Значит, каждый из источников тора совершает работу равную $\mathcal E dq=\mathcal E Idt$, где $\mathcal E $ - ЭДС источника тока, $I$ -- сила тока, $dt$ - время перемещения. В нашей системе возникнут электрические токи, и в каждой ее части выделится тепло:

По закону сохранения заряда, работа всех источников тока равна механической работе сил электрического поля плюс изменение энергии электрического поля и тепло Джоуля -- Ленца (1):

В случае если проводники и диэлектрики в системе неподвижны, то $\delta A=dW=0.$ Из (2) следует, что вся работа источников тока превращается в тепло.

Закон сохранения энергии в цепях с постоянными зарядами

В случае $q=const$ источники тока не войдут в рассматриваемую систему, тогда левая часть выражения (2) станет равна нулю. Помимо этого, тепло Джоуля - Ленца возникающее за счет перераспределения зарядов в телах при их перемещении обычно считают несущественным. В таком случае закон сохранения энергии будет иметь вид:

Формула (3) показывает, что механическая работа сил электрического поля равна уменьшению энергии электрического поля.

Применение закона сохранения энергии

Используя закон сохранения энергии в большом количестве случаев можно рассчитать механические силы, которые действуют в электрическом поле, при чем сделать это порой существенно проще, чем, если рассматривать непосредственное действие поля на отдельные части тел системы. При этом действуют по следующей схеме. Допустим необходимо найти силу $\overrightarrow{F}$, которая действует на тело в поле. Полагают, что тело перемещается (малое перемещение тела $\overrightarrow{dr}$). Работа искомой силы равна:

Пример 1

Задание: Вычислите силу притяжения, которая действует между пластинами плоского конденсатора, который помещен в однородный изотропный жидкий диэлектрик с диэлектрической проницаемостью $\varepsilon $. Площадь пластин S. Напряжённость поля в конденсаторе E. Пластины отключены от источника. Сравните силы, которые действуют на пластины при наличии диэлектрика и в вакууме.

Так как сила может быть только перпендикулярна пластинам, то перемещение выберем по нормали к поверхности пластин. Обозначим через dx перемещение пластин, то механическая работа будет равна:

\[\delta A=Fdx\ \left(1.1\right).\]

Изменение энергии поля при этом составит:

Следуя уравнению:

\[\delta A+dW=0\left(1.4\right)\]

Если между пластинами находится вакуум, то сила равна:

При заполнении конденсатора, который отключен от источника, диэлектриком напряженность поля внутри диэлектрика уменьшается в $\varepsilon $ раз, следовательно, уменьшается и сила притяжения пластин во столько же раз. Уменьшение сил взаимодействия между пластинами объясняется наличием сил электрострикции в жидких и газообразных диэлектриках, которые расталкивают пластины конденсатора.

Ответ: $F=\frac{\varepsilon {\varepsilon }_0E^2}{2}S,\ F"=\frac{\varepsilon_0E^2}{2}S.$

Пример 2

Задание: Плоский конденсатор частично погружен в жидкий диэлектрик (рис.1). При зарядке конденсатора жидкость втягивается в конденсатор. Вычислить силу f, с которой поле действует на единицу горизонтальной поверхности жидкости. Считать, что пластины соединены с источником напряжения (U=const).

Обозначим через h- высоту столба жидкости, dh - изменение (увеличение) столба жидкости. Работа искомой силы при этом будет равна:

где S -- площадь горизонтального сечения конденсатора. Изменение электрического поля равно:

На пластины перейдет дополнительный заряд dq, равный:

где $a$ -- ширина пластин, учтем, что $E=\frac{U}{d}$ тогда работа источника тока равна:

\[\mathcal E dq=Udq=U\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)adh=E\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)d\cdot a\cdot dh=\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh\left(2.4\right).\]

Если считать, что сопротивление проводов мало, то $\mathcal E $=U. Используем закон сохранения энергии для систем с постоянным током при условии постоянства разности потенциалов :

\[\sum{\mathcal E Idt=\delta A+dW+\sum{RI^2dt\ \left(2.5\right).}}\]

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh=Sfdh+\left(\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\right)Sdh\to f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\ .\]

Ответ: $f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}.$

1.4. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

В зависимости от того, для какого тока предназначается электрическая цепь, ее соответственно называют: «Электрическая цепь постоянного тока», «Электрическая цепь изменяющегося тока», «Электрическая цепь синусоидального тока», «Электрическая цепь не синусоидального тока».

Аналогично именуют и элементы цепей - машины постоянного тока, машины переменного тока, источники электрической энергии (ИЭЭ) постоянного тока, ИЭЭ переменного тока.

Элементы цепей и составленные из них цепи подразделяют и по виду вольт-амперной характеристики (ВАХ). При этом имеется ввиду зависимость их напряжения от тока U = f (I)

Элементы цепей, ВАХ которых линейны (рис.3, а), называют линейными элементами, и, соответственно, электрические цепи называют линейными.


Электрическую цепь, содержащую хотя бы один элемент с нелинейной ВАХ (рис.3, б), называют нелинейной.

Электрические цепи постоянного и переменного тока различают также по способу соединения их элементов - на неразветвленные и разветвленные.

Наконец, электрические цепи делят по числу источников электрической энергии - с одним или с несколькими ИЭЭ.

Различают активные и пассивные цепи, участки и элементы цепей.

Активными называют электрические цепи, содержащие источ­ники электрической энергии, пассивными - электрические цепи, не содержащие источников электрической энергии.

Для работы электрической цепи необходимо наличие активных элементов, т. е. источников энергии.

Простейшими пассивными элементами схемы электрической цепи являются сопротивление, индуктивность и емкость. С определенной степенью приближения они замещают реальные элементы цепи - резистор, индуктивную катушку и конденсатор соответственно.

В реальной цепи электрическим сопротивлением обладает не только резистор или реостат как устройства, предназначенные для использования их электрических сопротивлений, но и любой проводник, катушка, конденсатор, обмотка любого электромагнит­ного элемента и т. д. Но общим свойством всех устройств, обладаю­щих электрическим сопротивлением, является необратимое преоб­разование электрической энергии в тепловую. Действительно, из курса физики известно, что при токе i в резисторе, обладающем сопротивлением r, за время dt в соответствии с законом Джоуля-Ленца выделяется энергия



dw = ri 2 dt,

или можно сказать, что в этом резисторе потребляется мощность

p = dw/dt = ri 2 = ui,

где u - напряжение на зажимах резистора.

Тепловая энергия, выделяемая в сопротивлении, полезно исполь­зуется или рассеивается в пространстве: Но поскольку преобра­зование электрической энергии в тепловую в пассивном элементе носит необратимый характер, то в схеме замещения во всех случаях, когда необходимо учесть необратимое преобразование энергии, включается сопротивление. В реальном устройстве, например в электромагните, электрическая энергия может быть преобразована в механическую (притяжение якоря), но в схеме замещения это устройство заменяется сопротивлением, в котором выделяется эквивалентное количество тепловой энергии. И при анализе схемы нам уже безразлично, что в действительности является потребителем энергии: электромагнит или электроплитка.

Величина, равная отношению постоянного напряжения на участке пассивной электрической цепи к постоянному току в нем при отсутствии на участке э. д. с., называется электриче­ским сопротивлением постоянному току . Оно отличается от сопротивления переменному току, определяемого делением активной мощности пассивной электрической цепи на квадрат действующего тока. Дело в том, что при переменном токе из-за поверхностного эффекта, сущность которого состоит в вытесне­нии переменного тока из центральных частей к периферии сечения проводника, сопротивление проводника возрастает и тем больше, чем больше частота переменного тока, диаметр проводника и электрическая и магнитная проводимости его материала. Иначе говоря, в общем случае проводник всегда оказывает большее сопротивле­ние переменному току, чем постоянному. В цепях переменного тока сопротивление называется активным. Цепи, характеризую­щиеся только электрическими сопротивлениями их элементов, называются резистивными .



Индуктивность L , измеряемая в генри (Г), характеризует свойство участка цепи или катушки накапливать энергию магнитного поля. В реальной цепи индуктивностью обладают не только индук­тивные катушки, как элементы цепи, предназначенные для использования их индуктивности, но и провода, и выводы конденсаторов, и реостаты. Однако в целях упрощения во многих случаях полагают, что вся энергия магнитного поля сосредоточивается только в катушках.

При возрастании тока в катушке запасается энергия магнитного поля, которая может быть определена как w м = L i 2 / 2 .

Емкость С, измеряемая в фарадах (Ф), характеризует способ­ность участка цепи или конденсатора накапливать энергию элек­трического пол я . В реальной цепи электрическая емкость сущест­вует не только в конденсаторах, как элементах, предназначенных специально для использования их емкости, но и между проводни­ками, между витками катушек (межвитковая емкость), между про­водом и землей или каркасом электротехнического устройства. Однако в схемах замещения принято, что ем­костью обладают только конденсаторы.

Энергия электрического поля, запасаемая в конденсаторе при возрастании напряжения равна .

Таким образом, параметры электрической цепи характеризуют свойства элементов поглощать энергию из электрической цепи и преобразовывать в другие виды энергии (необратимые процессы), а также создавать свои собственные электрические или магнитные поля, в которых энергия способна накапливаться и при определенных условиях возвращаться в электрическую цепь. Элементы электрической цепи постоянного тока характеризуются только одним параметром - сопротивлением. Сопротивление определяет свойство элемента поглощать энергию из электрической цепи и преобразовывать ее в другие виды энергии.

1.5. ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА. ЗАКОН ОМА

При наличии электрического тока в проводниках движущиеся свободные электроны, сталкиваются с ионами кристаллической решетки, испытывают противодействие своему движению. Это противодействие количественно оценивается величиной сопротивления.

Рис. 4

Рассмотрим электрическую цепь (рис. 4), на которой слева показан ИЭЭ (выделен штриховыми линиями) с э.д.с. Е и внутренним сопротивлением r , а справа приведена внешняя цепь - потребитель электрической энергии R . Для выяснения количественной характеристики этого сопротивления воспользуемся законом Ома для участка цепи.

Под действием э. д. с. в цепи (рис.4) возникает ток, величина которого может быть определена по формуле:

I = U/R (1.6)

Это выражение является законом Ома для участка цепи: сила тока на участке цепи пря пропорциональна напряжению, приложенному к этому участку.

Из полученного выражения найдем R = U / I и U = I R.

Необходимо отметить, что приведённые выражения справедливы при условии, что R - величина постоянная т.е. для линейной цепи, характеризуемой зависимостью I = (l / R)U (ток линейно зависит от напряжения и угол φ наклона прямой на рис.3, а равен φ = arctg(1/R)). Отсюда следует важный вывод: закон Ома справедлив для линейных цепей, когда R = const.

За единицу сопротивления принято сопротивление такого участка цепи, в котором устанавливается ток в один ампер при напряжении в один вольт:

1 Ом = 1 В/1А.

Более крупными единицами измерения сопротивления являются килоом (кОм): 1 кОм = Ом и мегом (мОм): 1 мОм = Ом.

В общем случае R = ρ l/S , где ρ - удельное сопротивление проводника с площадью поперечного сечения S и длиною l.

Однако в реальных цепях напряжение U определяется не только величиной э.д.с., но и зависит от величины тока и сопротивления r ИЭЭ, так как любой источник энергии имеет внутреннее сопротивление.

Рассмотрим теперь полную замкнутую цепь (рис. 4). Согласно закону Ома получим для внешнего участка цепи U = IR и для внутреннего U 0 = I r. А так как э.д.с. равна сумме напряжений на отдельных участках цепи, то

Е = U + U 0 = IR + Ir

. (1.7)

Выражение (1. 7) является законом Ома для всей цепи: сила тока в цепи прямо пропорциональна э.д.с. источника.

Из выражения E = U + следует, что U = E - Ir , т.е. при наличии тока в цепи напряжение на ее зажимах меньше э.д.с. источника на величину падения напряжения на внутреннем сопротивлении r источника.

Измерить напряжения (вольтметром) на различных участках цепи можно только при замкнутой цепи. Э.д.с. же измеряют между зажимами источника при разомкнутой цепи, т.е. при холостом ходе, когда I ток в цепи равен нулю в этом случае E = U.

1.6. СПОСОБЫ СОЕДИНЕНИЯ СОПРОТИВЛЕНИЙ

При расчете цепей приходится сталкиваться с различными схемами соединений потребителей. В случае цепи с одним источником часто получается смешанное соединение, составляющее собой комбинацию параллельного и последовательного соединений, известных из курса физики. Задача расчета такой цепи состоит в том, чтобы при известных сопротивлениях потребителей определить токи, протекающие через них, напряжения, мощности на них и мощность всей цепи (всех потребителей).

Соединение, при котором по всем участкам проходит один и тот же ток, называется последовательным соединением участков цепи. Любой замкнутый путь, проходящий по нескольким участкам, называют контуром электрической цепи. Например, цепь, показанная на рис. 4 является одноконтурной.

Рассмотрим различные способы соединения сопротивлений более подробно.

1.6.1 Последовательное соединение сопротивлений

Если два или несколько сопротивлений соединены, как показано на рис. 5, одно за другим без разветвлений и по ним проходит один и тот же ток, то такое их соединение называют последовательным.

Рис. 5

По закону Ома можно определить напряжения на отдельных участках цепи (сопротивлениях)

U 1 = IR 1 ; U 2 = IR 2 ; U 3 = IR 3 .

Так как ток во всех участках имеет одинаковое значение, то напряжения на участках пропорциональны их сопротивлениям, т.е.

U 1 /U 2 = R 1 / R 2 ; U 2 /U 3 = R 2 / R 3 .

Мощности отдельных участков соответственно равны

P 1 = U 1 I ; P 2 = U 2 I ; P 3 = U 3 I .

А мощность всей цепи, равная сумме мощностей отдельных участков, определяется как

P = P 1 + P 2 + P 3 = U 1 I + U 2 I + U 3 I = (U 1 + U 2 + U 3)I = UI ,

откуда следует, что напряжение на зажимах цепи U равно сумме напряжений на отдельных участках

U =U 1 + U 2 + U 3 .

Разделив правую и левую части последнего уравнения на ток, получим

R = R 1 + R 2 +R 3 .

Здесь R = U/I - сопротивление всей цепи, или, как его часто называют, эквивалентное сопротивление цепи, т.е. такое равноценное сопротивление, заменяя которым все сопротивления цепи (R 1 , R 2 , R 3) при неизменном напряжении на ее зажимах, получим то же самое значение тока.

1.6.2. Параллельное соединение сопротивлений

Рис. 6

Параллельным соединением сопротивлений называется соединение (рис. 6), при котором один зажим каждого из сопротивлений присоединяется к одной точке электрической цепи, а другой зажим каждого из тех же сопротивлений присоединяется к другой точке электрической цепи. Таким образом, между двумя точкам электрической цепи будет включено несколько сопротивлений. образующих параллельные ветви.

Так как при этом напряжение на всех ветвях будет одним и тем же, то токи в ветвях могут быть разными, в зависимости от величин отдельных сопротивлений. Эти токи можно определить по закону Ома:

Напряжения между точками разветвления (А и Б рис.6)

Поэтому как лампы накаливания, так и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включаются параллельно.