Конвекция. Виды конвекции и их влияние на процесс теплообмена. Свободная (естественная) конвекция Теплоотдача путем конвекции

Конвекция- перемещение макроскопических частей среды (газа, жидкости), приводящее к переносу массы и теплоты. В реальных условиях конвекция всегда сопровождается теплопроводностью или молекулярным переносом теплоты. Совместный процесс переноса теплоты конвекцией и теплопроводностью называется конвективным теплообменом . Конвективный теплообмен между жидкостью и твердым телом часто называют теплоотдачей . На процесс теплоотдачи конвекцией влияет целый ряд факторов. 1. Характер движения жидкости около твердой стенки. По природе возникновения различают два вида движения - свободное и вынужденное. Свободным называется движение, происходящее вследствие разности плотностей нагретых и холодных частиц жидкости в поле тяжести.

При соприкосновении с нагретым телом жидкость (воздух) нагревается, становится легче и поднимается вверх. При соприкосновении с холодным телом жидкость охлаждается, становится тяжелее и опускается вниз. Свободное движение называется также естественной конвекцией и может происходить в ограниченном (канале, щелях) или неограниченном пространстве. Возникновение и интенсивность свободного движения определяются тепловыми условиями процесса и зависят от расположения поверхности (вертикальное или горизонтальное), направления теплоотдающей поверхности (вверх или вниз), рода жидкости, разности температур, напряженности гравитационного поля и объема пространства, в котором протекает процесс. Вынужденным называется движение, возникающее под действием посторонних возбудителей, например насоса, вентилятора и пр. В общем случае наряду с вынужденным движением одновременно может развиваться и свободное движение жидкости.

Относительное влияние последнего тем больше, чем больше разность температур в отдельных точках жидкости и чем меньше скорость вынужденного движения. Вынужденное движение жидкости может быть ламинарным или турбулентным. При ламинарном режиме течение имеет спокойный, струйчатый характер, а при турбулентном - движение неупорядоченное, вихревое. Для процессов теплоотдачи режим движения жидкости имеет большое значение. Изменение режима движения жидкости происходит при некоторой «критической» скорости, которая в каждом конкретном случае различна. Однако при любом виде движения в тонком слое у поверхности из-за наличия вязкого трения течение жидкости затормаживается, и скорость падает до нуля. Этот слой принято называть вязким подслоем.

Интенсивность теплоотдачи для газов и жидкостей в основном определяется термическим сопротивлением этого подслоя. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется путем теплопроводности пограничного слоя. При турбулентном режиме перенос теплоты сохраняется лишь в вязком малом подслое, а внутри турбулентного потока перенос осуществляется путем интенсивного перемешивания частиц жидкости. Потеря устойчивости ламинарного течения сопровождается образованием завихрений, которые за счет диффузии заполняют весь поток, вызывая сильное перемешивание жидкости, называемое турбулентным смешением. При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые непрерывно возникают и исчезают.


В последующем вследствие вязкости жидкости вихри постепенно затухают и исчезают. Чем больше вихрей, тем интенсивнее перемешивание жидкости, тем больше турбулентность потока и тем выше теплоотдача.Различают естественную и искусственную турбулентность. Первая образуется естественно в процессе нагрева жидкости и ее движения вдоль стенки, когда вначале имеет место ламинарное, спокойное движение, затем неустойчивое, неупорядоченное, после чего вихревое и турбулентное, с отрывом вихрей от стенки. Вторая вызывается искусственным способом путем установки или наличия в потоке каких-либо закручивающих лопаток, направляющих аппаратов, решеток и других устройств.

25. Режимы движения теплоносителей, их описание, характеристика, их влияние на процесс теплообмена.

Теплообменным аппаратом (теплообменником) называется устройство, в котором происходит передача теплоты от одной среды к другой. Среды, участвующие в теплообмене, называются теплоносителями. В качестве теплоносителей могут использоваться пары различных веществ, газы, жидкости и жидкие металлы. Теплоноситель, отдающий теплоту и имеющий более высокую температуру, называется первичным, а воспринимающий теплоту теплоноситель с более низкой температурой называется вторичным. Основная задача теплообменников заключается в передаче тепловой энергии между несколькими теплоносителями, которые проходят через это оборудование. Устройство аппарата зависит от течения теплоносителей и их взаимной геометрии. Есть несколько конфигураций направления.

Противоток Противоточный теплообменник представляет собой устройство с параллельным перемещением теплоносителей относительно друг друга. Такое устройство считается эффективным за счет наиболее результативного использования разности температур.

Параллельное однонаправленное течение. Название вида теплообменника само говорит за себя: теплоносители перемещаются в одном направлении, параллельно друг другу. Если при проектировании объекта важное значение придается эффективному использованию разности температур, то такой тип оборудования не подходит. Он используется в случае необходимости иметь примерно одинаковую температуру стенки, передающей тепло.

Перекрестный ток. Такое устройство предполагает, что теплоносители двигаются под прямым углом относительно друг друга. Так, первое течение проходит в трубах, которые собраны в пучок. Второй теплоноситель перемещается между этими трубами в целом перпендикулярно их оси. Такой теплообменник по эффективности находится между первым и вторыми вышеуказанными устройствами. Преимуществом аппарата является более простая конструкция.

Многоходовой ток в трубах и в пространстве между ними. Один и тот же теплообменник можно сконструировать таким образом, чтобы в нем комбинировались характеристики, присущие противоточному и параллельному оборудованию. Для этого нужно предусмотреть поворот труб, находящихся в одном корпусе. Количество поворотов не ограничено. Такой же эффект может быть и при использовании прямых труб, если грамотно внедрить коллекторы, представляющие собой трубы в форме U, или серпантин. Так, по конструкции аппарат будет простым, а отверстия для труб будут располагаться с одной стороны кожуха.

Общий случай. Выше описаны отдельные варианты движения теплоносителей. На практике теплообменник состоит из многоходовых течений сред, которые взаимно проникают друг в друга. Для поступления теплоносителей в общий резервуар есть несколько входных точек и столько же - выходных. Жидкость в аппарате может течь трехмерно, но есть зона рециркуляции с замкнутой линией тока.

При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.

Виды конвекции по причине появления

См. также

Другие способы переноса теплоты

Метеорологический аналог

Ссылки

  • Конвекция (видеурок, программа 8 класса)
  • Конвекция в жидкости (видеоролик с демонстрацией опыта)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Конвекция" в других словарях:

    Распространение теплоты в жидких и газообразных веществах путем перемещения нагретых частиц. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОНВЕКЦИЯ нагревание жидкостей и газов, происходящее путем перемещения… … Словарь иностранных слов русского языка

    КОНВЕКЦИЯ, передача тепла текучими средами, согласно кинетической теории. Конвекция представляет собой организованное круговое движение потока воды или воздуха на основе тепловых изменений в плотности и гравитационном притяжении, которые исходят… … Научно-технический энциклопедический словарь

    конвекция - и, ж. convection f., англ. convection, нем. Konvektion <лат. convectio привоз <лат. convectare свозить, привозить во множестве. ЭС. Перенос тепла или электрических зарядов движущейся средой. Конвекция тепла. БАС 1. На явлении конвекции… … Исторический словарь галлицизмов русского языка

    КОНВЕКЦИЯ - (от лат. convectio своз, привоз), перемещение какого либо признака, связанное с перемещением самого субстрата. Чаще всего этим именем обозначается перенос тепла, вызываемый перемещением нагретого вещества (жидкости или газа). Жидкость,… … Большая медицинская энциклопедия

    Конвекция - Конвекция. Конвекционные потоки, возникающие при нагревании воды в сосуде. КОНВЕКЦИЯ (от латинского convectio принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками этого вещества (имеющими более высокую температуру … Иллюстрированный энциклопедический словарь

    - (от лат. convectio принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками в ва. Естественная (свободная) К. возникает в поле силы тяжести при неравномерном нагреве (нагреве снизу) текучих или сыпучих в в. Нагретое в … Физическая энциклопедия

    Перемещение Словарь русских синонимов. конвекция сущ., кол во синонимов: 4 автоконвекция (1) … Словарь синонимов

    - (от лат. convectio принесение доставка), перемещение макроскопических частей среды (газа, жидкости), приводящее к переносу массы, теплоты и др. физических величин. Различают естественную (свободную) конвекцию, вызванную неоднородностью среды… … Большой Энциклопедический словарь

    Перемещение масс жидкости или газа вследствие разницы температур в отдельных местах среды и соответствующей разницы плотностей. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    конвекция - Перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN convection DE KonvektionWärmeströmung FR convection … Справочник технического переводчика

    конвекция - Процесс вертикального переноса тепла от места к месту, вызываемый различиями в температуре и плотности воды или воздуха … Словарь по географии

Книги

  • Конвекция Рэлея - Бенара , А. В. Гетлинг. Монография дает сжатое, но систематическое описание структур и динамики течений, возникающих при тепловой конвекции в плоском горизонтальном слое жидкости, подогреваемом снизу - конвекции…
  • Устойчивость равновесия, зарядка, конвекция и взаимодействие жидких масс в электрических полях , В. А. Саранин. Монография посвящена рассмотрению достаточно широкого спектра задач электрогидродинамики и электорфизики. Основное внимание уделено задачам устойчивости равновесия заряженных жидкостей,…

Конвекция - перенос теплоты движущимися частицами вещества. Конвекция имеет место только в жидких и газообразных веществах, а также между жидкой или газообразной средой и поверхностью твердого тела. При этом происходит передача теплоты и теплопроводностью. Совместное воздействие конвекции и теплопроводности в пограничной области у поверхности называют конвективным теплообменом.

Конвекция имеет место на наружной и внутренней поверхностях ограждений здания. В теплообмене внутренних поверхностей помещения конвекция играет существенную роль. При различных значениях температуры поверхности и прилегающего к ней воздуха происходит переход теплоты в сторону меньшей температуры. Тепловой поток, передаваемый конвекцией, зависит от режима движения жидкости или газа, омывающих поверхность, от температуры, плотности и вязкости движущейся среды, от шероховатости поверхности, от разности между температурами поверхности и омывающей ее среды.

Процесс теплообмена между поверхностью и газом (или жидкостью) протекает по-разному в зависимости от природы возникновения движения газа. Различают естественную и вынужденную конвекцию. В первом случае движение газа происходит за счет разности температуры поверхности и газа, во втором - за счет внешних для данного процесса сил (работы вентиляторов, ветра).

Вынужденная конвекция в общем случае может сопровождаться процессом естественной конвекции, но так как интенсивность вынужденной конвекции заметно превосходит интенсивность естественной, то при рассмотрении вынужденной конвекции естественной часто пренебрегают.

В дальнейшем будут рассматриваться только стационарные процессы конвективного теплообмена, предполагающие постоянство во времени скорости и температуры в любой точке воздуха. Но так как температура элементов помещения изменяется довольно медленно, полученные для стационарных условий зависимости могут быть распространены и на процесс нестационарного теплового режима помещения , при котором в каждый рассматриваемый момент процесс конвективного теплообмена на внутренних поверхностях ограждений считается стационарным. Полученные для стационарных условий зависимости могут быть распространены и на случай внезапной смены природы конвекции от естественной к вынужденной, например, при включении в помещении рециркуляционного аппарата нагрева помещения (фанкойла или сплит-системы в режиме теплового насоса). Во-первых, новый режим движения воздуха устанавливается быстро и, во-вторых, требуемая точность инженерной оценки процесса теплообмена ниже возможных неточностей от отсутствия коррекции теплового потока в течение переходного состояния.


Для инженерной практики расчетов для отопления и вентиляции важен конвективный теплообмен между поверхностью ограждающей конструкции или трубы и воздухом (или жидкостью). В практических расчетах для оценки конвективного теплового потока (рис.3) применяют уравнения Ньютона:

где q к - тепловой поток, Вт, передаваемый конвекцией от движущейся среды к поверхности или наоборот;

t a - температура воздуха, омывающего поверхность стенки, о С;

τ - температура поверхности стенки, о С;

α к - коэффициент конвективной теплоотдачи на поверхности стенки, Вт/м 2. о С.

Рис.3 Конвективный теплообмен стенки с воздухом

Коэффициент теплоотдачи конвекцией, a к - физическая величина, численно равная количеству теплоты, передаваемой от воздуха к поверхности твердого тела путем конвективного теплообмена при разности между температурой воздуха и температурой поверхности тела, равной 1 о С.

При таком подходе вся сложность физического процесса конвективного переноса теплоты заключена в коэффициенте теплоотдачи, a к . Естественно, что величина этого коэффициента является функцией многих аргументов. Для практического использования принимаются весьма приближенные значения a к .

Уравнение (2.5) удобно переписать в виде:


где R к - сопротивление конвективной теплоотдаче на поверхности ограждающей конструкции, м 2. о С/Вт, равное разности температуры на поверхности ограждения и температуры воздуха при прохождении теплового потока с поверхностной плотностью 1 Вт/м 2 от поверхности к воздуху или наоборот. Сопротивление R к является величиной обратной коэффициенту конвективной теплоотдачи a к .

Коэффициент теплопроводности при комнатной температуре.

Порядок величины коэффициента теплопроводности для различных веществ.

Конвекция -это 2 ой способ переноса тепла в пространстве.

Конвекция - это перенос тепла в жидкостях и газах с неравномерным распределением температуры за счет движения макрочастиц.

Перенос теплоты вместе с макроскопическими объемами вещества носит название конвективного теплопереноса , или просто конвекции .

Теплообмен между жидкостью и поверхностью твердого тела. Этот процесс получил специальное название конвективная теплоотдача (теплота отдается от жидкости к поверхности или наоборот)

Но конвекции в чистом виде не существует она всегда сопровождается теплопроводностью, такой совместный перенос тепла называется конвективным теплообменом.

Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплоотдачей , а поверхность тела, через которую переносится теплота,- поверхностью теплообмена или теплоотдающей поверхностью .

Теплопередача -это перенос тепла от одной жидкости к другой через разделяющую их твердую стенку.

Виды_ движения жидкости. Различают вынужденную и естественную конвекцию. Движение называется вынужденным, если оно происходит за счет внешних сил, не связанных с процессом теплообмена. Например, за счет сообщения ей энергии насосом или вентилятором. Движение называется свободным , если оно определяется процессом теплообмена и происходит за счет разности плотностей нагретых и холодных макрочастиц жидкости.

Режимы.движения, жидкости. Движение жидкости может быть установившимся и неустановившимся. Установившимся называется такое движение, при котором скорость во всех точках пространства, занятого жидкостью, не изменяется во времени. Если скорость потока изменяется во времени (по величине или направлению), то движение будет неустановившееся .

Экспериментально установлено два режима движения жидкости: ламинарный и турбулентный. При ламинарном режиме все частицы жидкости движутся параллельно друг другу и ограждающим поверхностям. При турбулентном режиме частицы жидкости движутся хаотически, неупорядоченно. Наряду с направленным движением вдоль потока частицы могут двигаться поперек и навстречу потоку. При этом скорость жидкости непрерывно изменяется как н величине, так и по направлению.



Выделение ламинарного и турбулентного режимов имеет большое значение, так как в зависимости от режима различным будет механизм переноса тепла в жидкости. При ламинарном режиме тепло в поперечном направлении потока переносится лишь путем теплопроводности, а при направлении потока переносится лишь путем теплопроводности, а при турбулентном, кроме того, и за счет турбулентных вихрей, или конвекции.

Понятие пограничного слоя. Исследования показали, что в потоке вязкой жидкости, омывающем какое-либо тело, по мере приближения к его поверхности скорость уменьшается и на самой поверхности становит­ся равной нулю. Вывод о том, что скорость жидкости, лежащей на по­верхности тела, равна нулю, называется гипотезой прилипания. Она спра­ведлива до тех пор, пока жидкость можно рассматривать как сплошную среду.

Пусть неограниченный поток жидкости движется вдоль плоской поверхности (рис). Скорость жидкости вдали от нее равна w0, а на самой поверхности согласно гипотезе прилипания равна нулю. Следовательно, около поверхности существует слой замороженной жидкости, называемый динамическим пограничным слоем , в котором скорость изменяется от 0 до …... Так как скорость в пограничном слое приближается к w 0 асимптотически, то вводят следующее определение его толщины: толщиной динамического пограничного слоя называется расстояние от поверхности, на котором скорость отличается от w0 ,на определенную величину, обычно на 1%.

По мере движения вдоль поверхности толщина пограничного слоя растет. Вначале образуется ламинарный пограничный слои, который с ростом толщины становится неустойчивым и разрушается, превращаясь в турбулентный пограничный слой. Однако и здесь, вблизи поверхности, сохраняется тонкий ламинарный подслой……., в котором жидкость движется ламинарно. На рис. показано изменение скорости в пределах ламинарного (сечение I) и турбулентного (сечение II) по

Перенос массы в результате перемещения сплошной среды (газа, жидкости) в результате наличия разницы температур или концентраций примеси

Описание

Конвекция (перемешивание) - перенос различно нагретых частей в жидкостях или газах в поле силы тяжести. Посредством конвекции совершается теплообмен путем перемещения материальных частиц. При естественной конвекции перемещение вещества происходит исключительно вследствие различия температур в различных местах среды и вызванного им различия плотностей. Свободная конвекция возникает в поле силы тяжести при неравномерном нагреве (нагреве снизу) текучих веществ.

Свободно конвективные течения возникают вследствие изменений плотности, обусловленных процессами тепло- или массообмена в поле гравитационных сил. Разность плотностей создает выталкивающую силу, под действием которой возникает течение. При охлаждении нагретого тела окружающим воздухом такое течение наблюдается в области, окружающей тело. К естественной конвекции относят также обусловленные выталкивающей силой течения при отводе теплоты в атмосферу или другую окружающую среду, циркуляцию в нагретых помещениях, в атмосфере или водоемах, течения, связанные с выталкивающей силой.

Нагретое вещество под действием Архимедовой силы перемещается относительно менее нагретого вещества в направлении, противоположном направлению силы тяжести.

Конвекция приводит к выравниванию температуры вещества.

При естественной конвекции интенсивность переноса теплоты пропорциональна разности температур D T различных частей среды, коэффициенту объемного расширения D V , напряженности силового поля g (гравитационного или сил инерции).

Естественная конвекция широко распространена в природе: в нижнем слое земной атмосферы, в океане, в недрах Земли, в звездах. Конвективные потоки приводят к возникновению таких атмосферных явлений, как ветер, ураганы, циклоны.

В условиях невесомости конвективные потоки исчезают, так как исчезает поддерживающая сила. Поэтому, например, в условиях невесомости невозможно горение (если не обеспечена искусственная тяга); продукты горения не удаляются из пламени, и оно гаснет вследствие недостатка кислорода.

Временные характеристики

Время инициации (log to от -2 до -2);

Время существования (log tc от 6 до 6);

Время деградации (log td от 0 до 0);

Время оптимального проявления (log tk от 0 до 0).

Диаграмма:

Технические реализации эффекта

Батареи отопления

Технической реализацией являются батареи отопления, которые за счет естественной конвекции обогревают помещение. Часто естественная конвекция используется для движения воды в трубах отопления.

В некоторых технических задачах наоборот требуется подавить естественную конвекцию для уменьшения тепловых потерь.

Так одной из задач при проектировании солнечных коллекторов является уменьшение тепловых потерь через прозрачную изоляцию. Для подавления движения в пространстве между двумя пластинам, одна из которых нагрета, указанное пространство заполняется ячеистым материалом. При отсутствии движения среды теплообмен между пластинами осуществляется только путем теплопроводности.

Для исключения теплообмена за счет конвекции могут использоваться прозрачные аэрогели (аэрогели или ксерогели - хрупкие микропористые тела, которые получаются высушиванием гелей - структурированных коллоидных систем с жидкой дисперсионной средой). Они состоят из очень мелких частиц двуокиси кремния и микропор, размеры которых меньше, чем средняя длина пробега молекул воздуха.

Применение эффекта

Изучение процессов естественной конвекции имеет большое значение в связи с проблемой сброса или отвода теплоты во многих приборах, процессах и системах. Естественная конвекция существенно влияет на предельные значения тепловых потоков, от нее зависит безопасность эксплуатации в условиях, когда обычные способы отвода теплоты непригодны и удаление выделяемой системой теплоты проводится путем естественной конвекции, что имеет большое значение во многих электронных приборах и энергетических установках.

Распространенным видом отопительных приборов являются конвекторы, в которых почти вся теплота от теплоносителя в отапливаемое помещение передается конвекцией. Наиболее распространены конвекторы из обребренных труб, по которым проходит горячая вода или пар, трубы заключены в кожухи с отверстиями внизу и наверху для прохода воздуха.

Воздухонагреватель (рис. 1) предназначен для подогрева воздуха и для дутья при работе доменной печи.

Воздухонагреватель

Рис. 1

Он представляет собой цилиндрический корпус, перекрытый куполом 4, футерованный огнеупором и снабженный термоизоляцией. Внутренний его объем разделен на две части: одна - шахта 5 для горения с горелкой для доменного газа 3, другую занимает набивка 1 .

Набивка состоит из металлических гофрированных и рифленых лент, намотанных на деревянный сердечник так, чтобы желобки рифления, накладываясь друг на друга под углом, образовывали узкие проходы треугольного сечения.

В режиме нагрева набивки продукты сгорания от горелки поднимаются вверх, под куполом переходят через ограждающую камеру и поступают в набивку, омывая ее сверху вниз в вертикальном направлении.

В режиме дутья холодный газ, заполняя это же пространство, забирает тепловую энергию, накопленную набивкой в режиме нагрева. Нагретый газ поступает в воздухопровод горячего дутья 2.

Литература

1. Сивухин Д.В. Общий курс физики. Том 2. Термодинамика и молекулярная физика.- М.: Наука, 1990.- С.509-514.

2. Конвекция. Физический энциклопедический словарь.- М.: Изд-во сов. энциклопедия, 1962.- Т.2.- С.436.

Ключевые слова

  • конвекция
  • конвективный теплообмен
  • теплообмен
  • перенос тепла
  • перенос вещества
  • поток тепла
  • перенос вещества

Разделы естественных наук: