Солнечная радиация на земле. Солнечная радиация

Страница 2 из 6

III. 1. ХАРАКТЕРИСТИКА СОЛНЕЧНОЙ РАДИАЦИИ
Солнечная радиация представляет собой поток идущего от Солнца электромагнитного излучения в широком диапазоне длин волн. В Международной системе единиц (СИ) длины волн оптического диапазона измеряются в микрометрах (мкм) или нанометрах (им), для которых существует соотношение: 1 мкм= 10 3 нм.
К верхней границе атмосферы на перпендикулярную к солнечным лучам поверхность поступает 1,98 кал/(см 2 мин) лучистой энергии (~ 140 тыс. лк). Эта величина радиационных условий и характеризует «солнечную постоянную».
Для количественной оценки солнечного излучения используют два показателя. Плотность потока (интенсивность) радиации - поток лучистой энергии, проходящей в единицу времени через перпендикулярную лучам единицу поверхности. Наиболее распространенными единицами измерения являются Вт/м 2 или кал/(см 2 мин). Сумма (доза) радиации - количество радиации, приходящей на единицу площади соответственно ориентированной поверхности за время действия облучения (час, день и т. д.). Измеряется она в кал/см 2 , ккал/см 2 , Дж/см 2 постояные множители для различных единиц измерения радиации приведены в работе .

В энергетическом отношении солнечная радиация почти полностью (на 99%) сосредоточена в области 290-4000 нм. ;)|и коротковолновая, или интегральная, радиация (ИР). Ра-/пьчцпя с длиной волн свыше 4000 нм относится к длинноволновой, или тепловой.
Для физиологических процессов растения наибольшее значите имеет коротковолновая радиация. Она подразделяется на ультрафиолетовую (290-380 нм), оказывающую фотоморфоге-ический эффект, видимую, или фотосинтетически активную радиацию (ФАР, 380-710 нм), дающую фотосинтетический, фотоморфогенетический и тепловой эффект, и близкую инфракрасную радиацию (750-4000 нм), дающую морфогенетический и тепловой эффект .
Величина ФАР может определяться либо путем непосредственного измерения с помощью фитопиранометров, либо рассчитываться на основе ИР с помощью переходных коэффициентов .
Нсли актинометрическая станция находится на расстоянии не более 50 км от опытного участка, можно пользоваться данными прихода суммарной ИР, полученной на станции, и переходить от них к суммарной ФАР. Суммарную приходящую ФАР вычисляют приближенно по формуле

2q* = 2qc, (in. 1)

где - дневная (месячная, годовая) сумма ИР (прямой и рассеянной); С - переходный коэффициент, равный 0,5.
Суммарная ИР может быть приближенно рассчитана по формуле :
Q = 49SU1 X 10-44-10,5(sinun)2,1, (Ш.2)

где S - продолжительность солнечного сияния за месяц; hu - полуденная высота Солнца на 15-е число месяца.

Определение месячных сумм радиации по этой формуле для территории от 35 до 65° с. ш. дает ошибку не более 10%.
Для оценки агроклиматических ресурсов по обеспеченности тершей ФАР могут быть использованы климатологические средние месячные суммы или карты сумм ФАР для районов Советского Союза .
Коротковолновая радиация подразделяется на следующие виды : S -прямая солнечная радиация; D - рассеянная радиация; Q - суммарная радиация, равная S + D; R - отраженная от поверхности земли или растений радиация; Вк = - (J R --остаточная коротковолновая радиация, или коротковолновый радиационный баланс. Все указанные виды радиации количественно оцениваются через плотности лучистого потока.
Следует отметить, что до последнего времени в подавляющей части работ фитофизиологического и экологического характера световые условия оценивались в единицах освещенности - люксах. Это имело место и в исследованиях с виноградом. Характеристика освещенности в люксах дает неполное представление об обеспеченности растений энергией солнечной радиации .
Для перехода от освещенности (в люксах) к энергетическим единицам используют пересчетные коэффициенты - энергетические эквиваленты люкса. В случае обратного пересчета пользуются световыми эквивалентами радиации. Для суммарной ИР световой эквивалент 1 кал/(см 2 мин) составляет 70 тыс. лк с пределами колебаний примерно ±5% . Световой эквивалент 0,1 кал/(см 2 мин) ФАР равен 20 тыс. лк . Энергетический эквивалент люкса для суммарной ФАР в безоблачную погоду для высот Солнца 11, 19 и 65° практически одинаков - 5,72хЮ_6 кал/(см 2 мин). При сплошной облачности 1 лк равен 3,88х10- 6 кал/(см 2 - мин) . По Цельникер , энергетический эквивалент люкса для ясной погоды при высоте Солнца 40-50° равен 5,70х10 6 кал/(см 2 - мин) для ФАР в границах 380-710 нм.

) , обратимся к рисунку 1 - где приведено параллельное и последовательное продвижение теплоты Солнца к горячему рассолу солнечного соляного пруда. А также происходящие изменения значений различных видов солнечного излучения и их суммарного значения на этом пути.

Рисунок 1 – Гистограмма изменения интенсивности солнечного излучения (энергии) на пути к горячему рассолу солнечного соляного пруда.

Для оценки эффективности активного использования различных видов солнечного излучения определимся с тем, какие из природных, техногенных и эксплуатационных факторов оказывают позитивное, а какие негативное влияние на концентрацию (увеличение поступления) солнечного излучения в пруд и аккумулирование его горячим рассолом.

Земля и атмосфера получают от Солнца в год 1,3∙10 24 кал тепла. Оно измеряется интенсивностью, т.е. количеством лучистой энергии (в калориях), которое поступает от Солнца за единицу времени на площадь поверхности, перпендикулярную солнечным лучам.

Лучистая энергия Солнца доходит до Земли в виде прямой и рассеянной радиации, т.е. суммарной. Она поглощается земной поверхностью и превращается в тепло не полностью, часть её теряется в виде отраженной радиации.

Прямая и рассеянная (суммарная), отраженная и поглощенная радиация относятся к коротковолновой части спектра. Наряду с коротковолновой радиацией к земной поверхности поступает длинноволновое атмосферы (встречное ), в свою очередь земная поверхность излучает длинноволновую радиацию (собственное ).

Прямое солнечное излучение относится к основному природному фактору поступления энергии к водной поверхности солнечного соляного пруда.

Солнечная радиация, поступающая на деятельную поверхность в виде пучка параллельных лучей, исходящих непосредственно от диска Солнца, называется прямой солнечной радиацией.

Прямая солнечная радиация относится к коротковолновой части спектра (с длинами волн от 0,17 до 4 мкм, фактически земной поверхности достигают лучи с длиной волны от 0,29 мкм)

Солнечный спектр можно разделить на три основных области:

Ультрафиолетовое излучение (λ< 0,4 мкм) - 9 % интенсивности.

Коротковолновая ультрафиолетовая области (λ< 0,29 мкм) практически полностью отсутствует на уровне моря вследствие поглощения О 2 , О 3 , О, N 2 и их ионами.

Ближний ультрафиолет диапазон (0,29 мкм <λ < 0,4 мкм) достигает Земли малой долей излучения, но вполне достаточной для загара;

Видимое излучение (0,4 мкм < λ < 0,7 мкм) - 45 % интенсивности.

Видимое излучение чистая атмосфера пропускает практически полностью, и она становится «окном», открытым для прохода на Землю этого вида солнечной энергии. Наличие аэрозолей и загрязнений атмосферы могут быть причинами значительного поглощения излучения этого спектра;

Инфракрасное излучение (λ> 0,7 мкм) - 46 % интенсивности. Ближняя инфракрасная область (0,7 мкм < < 2,5 мкм). На этот диапазон спектра приходится почти половина интенсивности солнечного излучения. Более 20 % солнечной энергии поглощается в атмосфере, в основном парами воды и СО 2 (диоксидом углерода). Концентрация СО 2 в атмосфере относительно постоянна и составляет 0,03 %, а концентрация паров воды меняется очень сильно - почти до 4 %.

При длинах волн более 2,5 мкм слабое внеземное излучение интенсивно поглощается СО 2 и водой, так что только небольшая часть этого диапазона солнечной энергии достигает поверхности Земли.

Дальний инфракрасный диапазон (λ> 12 мкм) солнечного излучения практически не поступает на Землю .

С точки зрения применения солнечной энергии на Земле следует учитывать только излучение в интервале длин волн 0,29 – 2,5 мкм

Большая часть солнечной энергии за пределами атмосферы приходится на диапазон длин волн 0,2 – 4 мкм, а на поверхности Земли - на диапазон 0,29 – 2,5 мкм .

Проследим, как перераспределяются, в общем виде , потоки энергии, которую дает Земле Солнце. Возьмем 100 условных единиц солнечной мощности (1,36 кВт/м 2), попадающей на Землю, и проследим за их путями в атмосфере. Один процент (13,6 Вт/м 2), короткий ультрафиолет солнечного спектра, поглощается молекулами в экзосфере и термосфере, разогревая их. Ещё три процента (40,8 Вт/м 2) ближнего ультрафиолета поглощаются озоном стратосферы. Инфракрасный хвост солнечного спектра (4 % или 54,4 Вт/м 2) остается в верхних слоях тропосферы, содержащей пары воды (выше водяного пара практически нет).

Оставшиеся 92 доли солнечной энергии (1,25 кВт/м 2) приходятся на «окно прозрачности» атмосферы 0,29 мкм < < 2,5 мкм. Они проникают в плотные приземные слои воздуха. Значительная часть их (45 единиц или 612 Вт/м 2), преимущественно в синей видимой части спектра, рассеиваются воздухом, придавая голубой цвет небу. Прямые солнечные лучи - оставшиеся 47 процентов (639,2 Вт/м 2) начального светового потока - достигают поверхности. Она отражает примерно 7 процентов (95,2 Вт/м 2) из этих 47 % (639,2 Вт/м 2) и этот свет по пути в космос отдает ещё 3 единицы (40,8 Вт/м 2) диффузному рассеянному свету неба. Сорок же долей энергии солнечных лучей, и ещё 8 от атмосферы (всего 48 или 652,8 Вт/м 2) поглощаются поверхностью Земли, нагревая сушу и океан.

Рассеянная в атмосфере световая мощность (всего 48 долей или 652,8 Вт/м 2) частично поглощается ею (10 долей или 136 Вт/м 2), а остальное распределяется между поверхностью Земли и космосом. В космическое пространство уходит больше, чем попадает на поверхность, 30 долей (408 Вт/м 2) наверх, 8 долей (108,8 Вт/м 2) вниз.

Это была описана общая, осредненная , картина перераспределения солнечной энергии в атмосфере Земли. Однако, она не позволяет решать частные задачи использования солнечной энергии для удовлетворения потребностей человека в конкретной зоне его проживания и трудовой деятельности и вот почему.

Атмосфера Земли лучше отражает косые солнечные лучи, поэтому часовая инсоляция на экваторе и в средних широтах намного больше чем в высоких.

Значениям высоты Солнца (возвышениям над горизонтом) 90, 30, 20, и 12 ⁰ (воздушная (оптическая) масса (m) атмосферы соответствует 1, 2, 3, и 5) при безоблачной атмосфере соответствует интенсивность около 900, 750, 600 и 400 Вт/м 2 (при 42 ⁰ - m = 1,5, а при 15 ⁰ - m = 4). В действительности полная энергия падающего излучения превышает указанные значения, поскольку она включает не только прямую составляющую, но и рассеянную при воздушных массах 1, 2, 3 и 5 величина рассеянной составляющей интенсивности излучения на горизонтальную поверхность при этих условиях соответственно равна 110, 90, 70 и 50 Вт/м 2 (с коэффициентом 0,3 – 0,7 для вертикальной плоскости, т. к. видна только половина неба). Кроме того, на участках небосклона близких к Солнцу, присутствует «околосолнечный ореол» в радиусе ≈ 5⁰.

В таблице 1 приведены данные по инсоляции для различных регионов Земли.

Таблица 1 – Инсоляция прямой составляющей по регионам для чистой атмосферы

Из таблицы 1 видно, что дневное количество солнечного излучения максимально не на экваторе, а вблизи 40 ⁰. Подобный факт также является следствием наклона земной оси к плоскости её орбиты. В период летнего солнцестояния Солнце в тропиках почти весь день находится над головой и продолжительность светового дня - 13,5 часов, больше чем на экваторе в день равноденствия. С повышением географической широты продолжительность дня возрастает, и хотя интенсивность солнечного излучения при этом уменьшается, максимальное значение дневной инсоляции приходится на широту около 40 ⁰ и остается почти постоянным (для условий безоблачного неба) вплоть до полярного круга.

Следует подчеркнуть, что данные таблицы 1 справедливы лишь для чистой атмосферы. С учетом облачности и загрязнений атмосферы промышленными отходами, характерных для многих стран мира, приведенные в таблице величины следует уменьшать, по крайней мере, вдвое. Например, для Англии 70 г. XX века, до начала борьбы за охрану окружающей среды, годовое количество солнечной радиации составляло лишь 900 кВт∙ч/м 2 вместо 1700 кВт∙ч/м 2 .

Первые данные, о прозрачности атмосферы на Байкале были получены В.В. Буфалом в 1964г. Он показал, что значения прямой солнечной радиации над Байкалом в среднем на 13 % выше, чем в Иркутске. Средний спектральный коэффициент прозрачности атмосферы на Северном Байкале в летний период составляет для красного, зеленого и синего фильтров соответственно 0,949, 0,906, 0,883. В летний период атмосфера более неустойчива в оптическом отношении, чем зимой, и эта неустойчивость значительно меняется от дополуденных к послеполуденным часам. В зависимости от годового хода ослабления водяным паром и аэрозолями меняется и их вклад в общее ослабление солнечной радиации. В холодную часть года основную роль играют аэрозоли, в теплую - водяной пар. Байкальская котловина и озеро Байкал отличаются сравнительно высокой интегральной прозрачностью атмосферы. При оптической массе m = 2 средние значения коэффициента прозрачности колеблются от 0,73 (летом) до 0,83 (зимой) При этом межсуточные изменения интегральной прозрачности атмосферы велики, особенно в полуденные часы - от 0,67 до 0,77 .

Аэрозоли существенно снижают поступление в акваторию пруда прямого солнечного излучения, причем они поглощают в основном излучение видимого спектра , с той длиной волны, которая беспрепятственно проходит пресный слой пруда, и это для аккумулирования прудом солнечной энергии имеет большое значения. (Слой воды толщиной 1 см практически непрозрачен для инфракрасного излучения с длиной волны более 1 мкм). Поэтому вода толщиной в несколько сантиметров используется как теплозащитный фильтр. Для стекла длинноволновая граница пропускания инфракрасного излучения составляет - 2,7 мкм.

Большое количество частиц пыли, беспрепятственно переносимое по степи также снижает прозрачность атмосферы.

Электромагнитное излучение испускают все нагретые тела, причем, чем холоднее тело, тем меньше интенсивность излучения и тем дальше в длинноволновую область смещен максимум его спектра. Существует очень простое соотношение λmax×Τ=c¹[ с¹= 0,2898 см∙град. ( Вина)], с помощью которого легко установить, где находится максимум излучения тела с температурой Τ (⁰К). Например, человеческое тело, имеющее температуру 37 + 273 = 310 ⁰К, испускает инфракрасные лучи с максимумом вблизи значения λmax = 9,3 мкм . А стенки, например, гелиосушилки, с температурой 90 ⁰С будут испускать инфракрасные лучи с максимумом вблизи значения λmax = 8 мкм.

Видимое солнечное излучение (0,4 мкм < λ < 0,7 мкм) имеет 45 % интенсивности потому, что температура поверхности Солнца 5780 ⁰К.

В свое большим прогрессом явился переход от электрической лампы накаливания с угольной нитью к современной лампе с вольфрамовой нитью. Все дело в том, что угольную нить можно довести до температуры 2100 ⁰К, а вольфрамовую - до 2500 ⁰К. Почему эти 400 ⁰К так важны? Все дело в том, что цель лампы накаливания - не греть, а давать свет. Следовательно, надо добиться такого положения, чтобы максимум кривой приходился на видимое изучение. Идеалом было бы располагать такой нитью, которая выдерживала бы температуру поверхности Солнца. Но даже переход с 2100 до 2500 ⁰К повышает долю энергии, приходящейся на видимое излучение, от 0,5 до 1,6 % .

Инфракрасные лучи, исходящие от тела, нагретого всего до 60 – 70 ⁰С, каждый может почувствовать, поднося ладонь снизу (для устранения тепловой конвекции).

Приход прямого солнечного излучения в акваторию пруда соответствует его приходу на горизонтальную поверхность облучения. При этом, изложенное выше показывает, неопределенность количественной характеристики прихода в конкретный момент времени, как сезонного, так и суточного. Постоянной характеристикой является только высота Солнца (оптическая масса атмосферы).

Аккумулирование же солнечного излучения земной поверхностью и прудом существенно различаются.

Естественные поверхности Земли обладают различной отражательной (поглощательной) способностью. Так, темные поверхности (чернозем, болота торфяные) имеют низкое значение альбедо около 10 %. (Альбедо поверхности - это отношение потока излучения, отраженного этой поверхностью в окружающее пространство, к потоку, упавшему на неё).

Светлые поверхности (белый песок) обладают большим альбедо, 35 – 40 %. Альбедо поверхностей с травяным покровом колеблются в пределах 15 – 25 %. Альбедо крон лиственного леса летом равно 14 – 17 %, хвойного леса - 12 – 15 %. Альбедо поверхности уменьшается с увеличением высоты Солнца.

Альбедо же водных поверхностей заключается в пределах 3 – 45 %, в зависимости от высоты Солнца и степени волнения .

При спокойной водной поверхности альбедо зависит только от высоты Солнца (рисунок 2).

Рисунок 2 – Зависимость коэффициента отражения солнечного излучения для спокойной водной поверхности от высоты Солнца.

Вступление солнечного излучения и прохождение его через слой воды имеет свои особенности.

В общем виде оптические свойства воды (её растворов) в видимой области солнечного излучения представлены на рисунке 3.

Ф0- поток (мощность) падающего излучения,

Фотр- поток отраженного водной поверхностью излучения,

Фпогл- поток поглощенного водной массой излучения,

Фпр- поток прошедшего водную массу излучения.

Коэффициент отражения тела Фотр/Ф0

Коэффициент поглощения Фпогл/Ф0

Коэффициент пропускания Фпр/Ф0.

Рисунок 3 – Оптические свойства воды (её растворов) в видимой области солнечного излучения

На плоской границе двух сред воздух - вода наблюдаются явления отражения и преломления света.

При отражении света луч падающий, луч отраженный и перпендикуляр к отражающей поверхности, восстановленный в точке падения луча, лежат в одной плоскости, и угол отражения равен углу падения. В случае преломления падающий луч, перпендикуляр, восстановленный в точке падения луча к границе раздела двух сред, и преломленный луч лежат в одной плоскости. Угол падения α и угол преломления β (рисунок 4) связаны sin α /sin β=n2|n1, где n2 - абсолютный показатель преломления второй среды,n1 - первой. Поскольку для воздуха n1≈1 , то формула примет вид sin α /sin β=n2

Рисунок 4 – Преломление лучей при переходе из воздуха в воду

Когда лучи идут из воздуха в воду, то они приближаются к «перпендикуляру падения»; например, луч, падающий на воду под углом к перпендикуляру к поверхности воды, вступает в неё уже под углом, который меньше, чем (рис 4,а). Но когда падающий луч, скользя по поверхности воды, падает на водную поверхность почти под прямым углом к перпендикуляру, например, под углом 89 ⁰ и менее, то он вступает в воду под углом, меньшем чем прямой, а именно под углом всего 48,5 ⁰. Под большим углом к перпендикуляру, чем 48,5 ⁰, луч вступить в воду не может: это для воды «предельный» угол (рисунок 4,б).

Следовательно, лучи, падающие на воду под всевозможными углами, сжимаются под водой в довольно тесный конус с углом раствора 48,5 ⁰ + 48,5 ⁰ = 97 ⁰ (рис 4,в).

Кроме того преломление воды зависит от её температуры (таблица 2), однако изменения эти столь не значительны что не могут представлять интереса для инженерной практики, по рассматриваемой теме.

Таблица 2 – Показатель преломления воды при различной температуре t

n n n

Проследим теперь за ходом лучей, идущих обратно (из точки Р) - из воды в воздух (рисунок 5). По законам оптики, пути будут те же самые, и все лучи, заключенные в упомянутом 97-градусном конусе, выйдут в воздух под различными углами, распределяясь по всему 180-градусному пространству над водой. Подводные лучи, находящиеся вне упомянутого угла (97-градусного) не выйдут из-под воды, а отразятся целиком от её поверхности, как от зеркала.

Рисунок 5 – Преломление лучей при переходе из воды в воздух

Если n2 < n1(вторая среда оптически менее плотная), то α < β. Наибольшему значению β = 90 ⁰ соответствует угол падения α0 , определяемый равенством sinα0=n2/n1. При угле падения α >α0 существует только отраженный луч, преломленный луч отсутствует (явление полного внутреннего отражения ).

Всякий подводный луч, встречающий поверхность воды под углом, большим «предельного» (т.е. большим 48,5 ⁰), не преломляется, а отражается: он претерпевает «полное внутреннее отражение ». Отражение называется в данном случае полным потому, что здесь отражаются все падающие лучи, между тем как даже самое лучшее зеркало из полированного серебра отражает только часть падающих на него лучей, остальную же поглощает. Вода при указанных условиях является идеальным зеркалом. В данном случае речь идет о видимом свете. Вообще говоря, показатель преломления воды, как и других веществ, зависит от длины волны (это явление называется дисперсией). Как следствие этого предельный угол, при котором наступает полное внутреннее отражение, не один и тот же для разных длин волн, но для видимого света при отражении на границе вода - воздух этот угол изменяется меньше чем на 1⁰ .

Благодаря тому, что под большим углом к перпендикуляру, чем 48,5⁰, солнечный луч вступить в воду не может: это для воды «предельный» угол (рисунок 4,б), то водная масса, во всем диапазоне значений высоты Солнца изменяется не столь незначительно, чем воздушная - она всегда меньше .

Однако, поскольку, плотность воды в 800 раз больше плотности воздуха, то поглощение солнечного излучения водой будет меняться существенно.

Кроме того, если световое излучение проходит сквозь прозрачную среду, то спектр такого света обладает некоторыми особенностями. Определенные линии в нем сильно ослаблены, т. е. волны соответствующей длины сильно поглощаются рассматриваемой средой. Такие спектры называются спектрами поглощения . Вид спектра поглощения зависит от рассматриваемого вещества.

Поскольку раствор солей солнечного соляного пруда может содержать различные концентрации хлористых натрия и магния и их отношения, то однозначно говорить о спектрах поглощения нет смысла. Хотя исследований и данных по этому вопросу предостаточно.

Так, например, исследованиями, проведенными в СССР (Ю. Усмановым) по выявлению коэффициента пропускания излучения различных длин волн для воды и раствора хлористого магния различной концентрации получены следующие результаты (рисунок 6). А Б. Дж. Бринквортом показана графическая зависимость поглощения солнечной радиации и монохроматическая плотность потока солнечной радиации (излучения) в зависимости от длин волн (рисунок 7).

Рисунок 7 – Поглощение солнечной радиации в воде

Рисунок 6 – Зависимость пропускной способности раствора хлористого магния от концентрации

Следовательно, количественное поступление прямого солнечного излучения к горячему рассолу пруда, после вступления в воду, будет зависеть: от монохроматической плотности потока солнечной радиации (излучения); от высоты Солнца. А также от альбедо поверхности пруда, от чистоты верхнего слоя солнечного соляного пруда, состоящего из пресной воды, с толщиной обычно 0,1 – 0,3 м, где подавить перемешивание не удается, состава, концентрации и толщины раствора в градиентном слое (изолирующем слое с увеличивающейся книзу концентрацией рассола), от чистоты воды и рассола.

Из рисунков 6 и 7 следует, что вода обладает наибольшей пропускной способностью в видимой области солнечного спектра. Это является очень благоприятным фактором для прохождения солнечной радиации через верхний пресный слой солнечного соляного пруда.

Список Литературы

1 Осадчий Г.Б. Солнечная энергия, её производные и технологии их использования (Введение в энергетику ВИЭ) / Г.Б. Осадчий. Омск: ИПК Макшеевой Е.А., 2010. 572 с.

2 Твайделл Дж. Возобновляемые источники энергии / Дж. Твайделл, А. Уэйр. М.: Энергоатомиздат, 1990. 392 с.

3 Даффи Дж. А. Тепловые процессы с использованием солнечной энергии / Дж. А. Даффи, У. А. Бекман. М.: Мир, 1977. 420 с.

4 Климатические ресурсы Байкала и его бассейна /Н. П. Ладейщиков, Новосибирск, Наука, 1976, 318с.

5 Пикин С. А. Жидкие кристаллы/ С. А. Пикин, Л. М. Блинов. М.: Наука, 1982. 208 с.

6 Китайгородский А. И. Физика для всех: Фотоны и ядра/ А. И. Китайгородский. М.: Наука, 1984. 208 с.


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГОУ «КГТУ»)

по дисциплине учение о биосфере

“Солнечная радиация. Радиационный баланс. Географическое распределение составляющих. Энергетический баланс Земли и климат”

Работу выполнила

ст. гр. 07-ЭП

Климова Елена

Калининград

1.Солнечная радиация………………………………………………………...….3

2. Солнечная постоянная…………………………………………………………3

3.Радиационный баланс………………………………….………………………5

4.Энергетический баланс……………………………………………………...…7

5. Распределение составляющих энергетического баланса……………………9

6. Современный климат…………………………………………………………14

7.Список использованных источников…………………………………………18

1. Солнечная радиация

Солнце – ближайшая к Земле звезда, принадлежащая к классу желтых звезд карликов. Диаметр Солнца около 1,4 млн.км, среднее расстояние от Земли 149,5 млн. км. В результате происходящих на Солнце ядерных реакция температура на его поверхности равна приблизительно 6000 К, что обуславливает излучение Солнцем значительного количества энергией.

Поступающая от Солнца на Землю радиация является единственной формой прихода лучистой энергией, определяющей энергетический баланс и термический режим Земли. Радиационная энергия, приходящая к земле от всех других небесных тел, на столько мала, что не оказывает сколько-нибудь заметного влияния на происходящие на Земле процессы теплообмена. В соответствии с температурой излучающей поверхности Солнца максимум радиационной энергии наблюдается при длинах волн около 0,50 мкм, причем основная часть энергии, излучаемой Солнцем, приходится на интервал длин волн 0,3-2,0 мкм.

При удалении от Солнца интенсивность его излучения изменяется обратно пропорционально квадрату расстояния. Так как Земля движется вокруг Солнца по эллиптической орбите, интенсивность солнечной радиации, приходящей на внешнюю границу атмосферы, изменяется в течение года в соответствии с изменением расстояния между Землей и Солнцем. Наименьшее расстояние Земли от Солнца отмечается в начале января и составляет 147 млн. км. Наибольшее расстояние, достигаемое в начале июня, равно 153 млн. км.

2. Солнечная постоянная

Поток солнечной энергии за единицу времени через площадку единичного размера, перпендикулярно солнечным лучам и расположенную вне атмосферы на среднем расстоянии от Земли, называют солнечной постоянной. В связи с изменениями расстояния Земли от Солнца фактические значения потоков солнечной энергии на внешней границе атмосферы Земли отличаются от солнечной постоянной. Эти отличия достигают 3,5%.

Вопрос об определении величины солнечной постоянной рассматривался в многочисленных исследованиях. В течение длительного времени солнечная постоянная находилась по данным наземных актинометрических наблюдений. Такой метод определения ее величины был связан с заметными погрешностями, поскольку приходилось учитывать ослабление потока солнечной радиации в атмосфере, что можно было сделать только приближенно.

В последнее время были выполнены наблюдения за величиной солнечной постоянной на больших высотах, в том числе и на спутниках Земли. Эти наблюдения привели к заключению, что солнечная постоянная равна 1368 Вт/м².

Наблюдения на спутниках показали, что солнечная постоянная может на короткое время изменяться на величину от 0,1%-0,2% . Вопрос о возможности ее длительных изменений, относящихся к интервалам больше года, пока еще не выяснен, в связи с чем значение этих изменений для колебания климата не может считаться доказанным.

Зная величину солнечной постоянной, можно рассчитать, сколько энергии поступило бы на поверхность Земли в различных широтах при отсутствии влияния атмосферы на радиацию.Наибольшие суточные суммы радиации наблюдаются под полюсами в периоды летнего солнцестояния. Следует отметить, что в периоды при перемещении к более низким широтам после некоторого снижения радиации наблюдается небольшой второй максимум, который после перехода в южное полушарие сменяется областью снижения радиации вплоть до нулевых значений. В периоды равноденствий максимум радиации приходится на экватор, причем при увеличении широты суммы радиации убывают сначала медленно, а затем все быстрее. В высотах широтах зимой радиация мала и равна нуля.

В действительности атмосфера не является вполне прозрачной средой для солнечной радиации. Заметная часть поступающей от Солнца радиации поглощается и рассеивается в атмосфере, а также отражается обратно в мировое пространство. Особенно большое влияние на распространение солнечной радиации оказывают облака, однако и при отсутствии облачности солнечная радиация в атмосфере существенно изменяется.

Радиация Солнца поглощается в атмосфере водяным паром и каплями воды, озоном, углекислым газом и пылью. Рассеяние солнечной радиации обуславливается как молекулами воздуха, так и различными примесями – пылью, водяными каплями и т.д.

Прошедший через атмосферу поток прямой солнечной радиации зависит от прозрачности атмосферы, а также от высоты Солнца, которая определяет длину пути солнечных лучей в атмосфере. Наибольшее значение потока прямой радиации наблюдается при безоблачном небе и высокой прозрачности атмосферы. В таких условиях на перпендикулярную поверхность может достигать 1000-1200 Вт/м². Средние полуденные значения этого потока в средних широтах обычно равны 700-900 Вт/м². При уменьшении высоты Солнца в суточном ходе прямая солнечная радиация заметно уменьшается в соответствии с возрастанием оптической массы атмосферы.

Количество рассеянной радиации, поступающей к земной поверхности, изменяется в широких пределах, главным образом в зависимости от условий облачности и высоты Солнца. Теоретический расчет этого потока радиации довольно сложен и не дает вполне точных результатов. Имеющиеся данные наблюдения позволяют заключить, что во многих случаях поток рассеянной радиации сравним по величине с потоком прямой радиации, приходящей на горизонтальную поверхность. Наибольшие значения рассеянной радиации наблюдается при наличии облачности. Существенное влияние на рассеянную радиацию оказывает отражательная способность земной поверхности. В частности, рассеянная радиация заметно возрастает при наличии снежного покрова, который отражает значительное количество солнечной энергии.

Общая картина основных преобразований энергии Солнца в географической оболочке Земли имеет следующий вид. Поток солнечной радиации на среднем расстоянии Земли от Солнца равен величине солнечной постоянной. Вследствие шарообразности Земли на единицу поверхности внешней границы атмосферы в среднем поступает четвертая часть общей величины потока – около 340 Вт/м², причем приблизительно 240 Вт/м² поглощается Землей как планетой. При этом существенно, что большая часть общего количества поглощенной солнечной радиации поглощается поверхностью Земли, тогда как атмосфера поглощает значительно меньшую часть.

3. Радиационный баланс

Поверхность Земли, нагретая в результате поглощения солнечной радиации, становится источником длинноволнового излучения, передающего тепло в атмосферу. Содержащиеся в атмосфере водяной пар, пыль и различные газы, поглощающие длинноволновую радиацию, задерживают длинноволновое излучение земной поверхности. В связи с этим значительная часть излучения земной поверхности компенсируется противоизлучением атмосферы. Разность собственного излучения поверхности Земли и поглощаемого земной поверхностью противоизлучения атмосферы называется эффективным излучением. Эффективное излучение земной поверхности зависит главным образом от температуры земной поверхности, влагосодержания воздуха и облачности. В зависимости от этих фак­торов эффективное излучение может изменяться от значений, близких к нулю, до нескольких сот Вт/м 2 . Эффективное излучение обычно в несколько раз меньше потока длинноволнового излучения земной поверхности, который наблюдался бы при полной прозрачности атмосферы для длинноволновой радиации. Сумма потоков радиационной энергии, приходящих к поверхности Земли и уходящих от нее, называется радиационным балансом земной поверхности. Очевидно, что радиационный баланс равен разности между количеством прямой и рассеянной радиации, поглощаемой земной поверхностью, и эффективным излучением.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.

Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов. Энергия радиационного баланса земной поверхности расходуется на нагревание атмосферы, испарение, теплообмен с другими слоями гидросферы и литосферы.

На Землю поступает мощный поток солнечной энергии, который поддерживает жизнь и возвращается в космическое пространство в виде теплового излучения. Можно говорить о системах превращения энергии из одной формы в другую, а именно – энергии солнечного излучения в химическую энергию, накапливаемую фотосинтезирующими растениями, а ее – в другие формы по мере прохождения пищевых цепей. Большая часть поступающей солнечной энергии превращается непосредственно в тепло: происходит нагревание почвы, воды, а от них атмосферного воздуха. Приобретенное этими составляющими геосфер тепло в существенной мере определяет климат, погоду, движение воздушных и водных масс, в конце концов обогревает все живущее на нашей планете. Постепенно тепло отдается в космическое пространство, где и теряется. В огромном потоке энергии для экосистем всех размеров есть вполне определенное место. Как установлено, в экосистемах используется весьма малая часть потока энергии.

Вся огромная масса растений использует всего 0,5% поступающей на Землю солнечной энергии. В любом случае поступающего солнечного излучения заведомо достаточно для удовлетворения любых немыслимых потребностей человечества как части биосферы. В связи с тем, что большая часть поступающей на Землю солнечной энергии при любом использовании, в конечном счете, превращается в тепло, то увеличение использования солнечной энергии не может сколько-нибудь ощутимо повлиять на динамику биосферных процессов.

ресурсы земли и их использованиеКнига >> Промышленность, производство

... энергетического баланса ... составляющей расходной части баланса активной мощности являются суммарные потери мощности при передаче и распределении ... - воздухоподогреватель. Радиационные пароперегреватели размещают на... географической ... интенсивности солнечной радиации ...

  • Экология и экономика природопользования

    Реферат >> Экология

    ... энергетически более активны. Энергетическая неоднородность выражается в неравномерном распределении по земной поверхности солнечной ... составляющих ... баланс и термоядерный синтез или воздействие на все живое высоких доз радиации ... , радиационных , ... -географическими ...

  • Экология природопользование, инженерная защита окружающей среды

    Реферат >> Экология

    ... , радиационного фона... Географический ареал любого вида соответствует географическому распределению ... условиях. Адаптированность энергетического баланса в эко- ... солнечной радиации , благодаря которой синтезируется органическое вещество. Для растений составляющие ...

  • Лучистая энергия Солнца, или солнечная радиация, является основным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и Луны, ничтожно мала по сравнению с солнечной радиацией и существенного вклада в тепловые процессы на Земле не вносит. Так же ничтожно мал поток тепла, направленный к поверхности из глубин планеты. Солнечная радиация распространяется по всем направлениям от источника (Солнца) в виде электромагнитных волн со скоростью, близкой к 300 000 км/сек. В метеорологии рассматривают преимущественно тепловую радиацию, определяемую температурой тела и его излучательной способностью. Тепловая радиацияимеет длины волн от сотен микрометров до тысячных долей микрометра. Рентгеновское излучение и гамма-излучение в метеорологии не рассматриваются, так как в нижние слои атмосферы они практически не поступают.

    Тепловую радиацию принято подразделять на коротковолновую и длинноволновую . Коротковолновой радиацией называют радиацию в диапазоне длин волн от 0,1до 4 мкм, длинноволновой - от 4 до 100 мкм. Солнечная радиация, поступающая к поверхности Земли, на 99% является коротковолновой. Коротковолновую радиацию подразделяют на ультрафиолетовую (УФ), с длинами волн от 0,1 до 0,39 мкм; видимый свет (ВС) - 0,4 - 0,76 мкм; инфракрасную (ИК) - 0,76 - 4 мкм. ВС и ИК радиация дают наибольшую энергию: на ВС приходится 47% лучистой энергии, на ИК - 44%, а на УФ - только 9% лучистой энергии. Такое распределение тепловой радиации соответствует распределению энергии в спектре абсолютно черного тела с температурой в 6000К. Эту температуру считают условно близкой к фактической температуре на поверхности Солнца (в фотосфере, являющейся источником лучистой энергии Солнца). Максимум лучистой энергии при такой температуре излучателя, согласно закону Вина

    l= 0,2898/Т (см*град). (28)

    приходится на сине-голубые лучи с длинами около 0,475 мкм (l.- длина волны, Т - абсолютная температура излучателя).

    Общее количество излучаемой тепловой энергии пропорционально, согласно закону Стефана-Больцмана, четвертой степени абсолютной температуры излучателя:

    где s = 5,7*10 -8 Вт/м 2 *К 4 (постоянная Стефана-Больцмана).

    Количественной мерой солнечной радиации, поступающей на поверхность, служит энергетическая освещенность, или плотность потока радиации . Энергетическая освещенность - это количество лучистой энергии, поступающей на единицу площади в единицу времени . Она измеряется в Вт/м 2 (или кВт/м 2). Это означает, что на 1 м 2 в секунду поступает 1 Дж (или 1 кДж) лучистой энергии. Энергетическую освещенность солнечной радиации, падающей на площадку единичной площади, перпендикулярную солнечным лучам в единицу времени на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S о. При этом под верхней границей атмосферы понимают условие отсутствия воздействия атмосферы на солнечную радиацию. Поэтому величина солнечной постоянной определяется только излучательной способностью Солнца и расстоянием между Землей и Солнцем. Современными исследованиями с помощью спутников и ракет установлено значение S о, равное 1367 Вт/м 2 с ошибкой ±0,3%, среднее расстояние между Землей и Солнцем в этом случае определено как 149,6*10 6 км. Если учитывать изменения солнечной постоянной в связи с изменением расстояния между Землей и Солнцем, то при среднегодовом значении 1,37 кВт/м 2 , в январе она будет равна 1,41 кВт/м 2 , а в июне - 1,34 кВт/м 2 , следовательно, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем Южное полушарие за свой летний день.

    В связи с постоянным изменением солнечной активности солнечная постоянная, возможно, испытывает колебания из года в год. Но эти колебания, если они и существуют, настолько малы, что лежат в пределах точности измерений современных приборов. Но за время существования Земли солнечная постоянная, вероятнее всего, меняла свое значение.

    Зная солнечную постоянную, можно рассчитать количество солнечной энергии, поступающей на освещенное полушарие на верхней границе атмосферы. Оно равно произведению солнечной постоянной на площадь большого круга Земли. При среднем радиусе земли, равном 6371 км, площадь большого круга составляет p*(6371) 2 = 1,275*10 14 м 2 , а приходящая на нее лучистая энергия - 1,743*10 17 Вт. За год это составит 5,49*10 24 Дж.

    Приход солнечной радиации на горизонтальную поверхность на верхней границе атмосферы называют солярным климатом . Формирование солярного климата определяется двумя факторами - продолжительностью солнечного сияния и высотой Солнца. Количество радиации, приходящейся на границе атмосферы на единицу площади горизонтальной поверхности пропорционально синусу высоты Солнца, которая меняется не только в течение дня, но и зависит от времени года. Как известно, высота Солнца для дней солнцестояния определяется по формуле 90 0 - (j±23,5 0), для дней равноденствия - 90 0 -j, где j - широта места. Таким образом, высота Солнца на экваторе меняется в течение года от 90 до 66,5 0 , в тропиках - от 90 до 43 0 , на полярных кругах - от 47 до 0 0 и на полюсах - от 23,5 до 0 0 . В соответствии с таким изменением высоты Солнца зимой в каждом полушарии приток солнечной радиации на горизонтальную площадку быстро убывает от экватора к полюсам. Летом картина более сложная: в середине лета максимальные значения приходятся не на экватор, а на полюса, где продолжительность дня составляет 24 часа. В годовом ходе во внетропической зоне наблюдается один максимум (летнее солнцестояние) и один минимум (зимнее солнцестояние). В тропической зоне приток радиации достигает максимума два раза в год (дни равноденствия). Годовые количества солнечной радиации меняются от 133*10 2 МДж/м 2 (экватор) до 56*10 2 МДж/м 2 (полюса). Амплитуда годового хода на экваторе небольшая, во внетропической зоне - значительная.

    Прямая солнечная радиация

    Прямой солнечной радиациейназывают радиацию, приходящую к земной поверхности непосредственно от солнечного диска . Несмотря на то, что солнечная радиация распространяется от Солнца по всем направлениям, к Земле она приходит в виде пучка параллельных лучей, исходящих как бы из бесконечности. Приток прямой солнечной радиации на земную поверхность или на любой уровень в атмосфере характеризуется энергетической освещенностью - количеством лучистой энергии, поступающей за единицу времени на единицу площади. Максимальный приток прямой солнечной радиации будет поступать на площадку, перпендикулярную солнечным лучам. Во всех остальных случаях энергетическая освещенность будет определяться высотой Солнца, или синусом угла, который образует солнечный луч с поверхностью площадки

    S’=S sin h c (30)

    В общем случае S (энергетическая освещенность площадки единичной площади, перпендикулярной солнечным лучам) равно S o . Поток прямой солнечной радиации, приходящийся на горизонтальную площадку, называется инсоляцией.

    Продолжительность солнечного сияния - это время, в течение которого прямые солнечные лучи освещают земную поверхность. Продолжительность солнечного сияния является важным элементом климата и зависит от длины дня, определяемой широтой местности и временем года, и облачности. На метеостанции она определяется гелиографами. Продолжительность солнечного сияния выражают либо в часах, либо в процентах от наиболее возможной продолжительности.

    Продолжительность солнечного сияния возрастает от полярных широт к тропикам. В Арктике относительная продолжительность составляет 25% и ниже, в Северной Европе - около 40%, в Италии - 50%. Максимум продолжительности солнечного сияния отмечают в субтропических пустынях (например, в Аризоне - 88%, а в летнее время до 97% возможной). В дождливых областях близ экватора - 35%.

    В годовом ходе максимум продолжительности солнечного сияния для умеренных широт приходится на июль-август, в пустынях субтропиков - на июнь и сентябрь. Внутри тропиков максимум солнечного сияния наблюдается в сухой период, минимум - во влажный (особенно в муссонных районах).

    Горы в среднем беднее солнечным сиянием, чем прилегающие равнины из-за сильного развития облаков конвекции летом. Но зимой в высокогорье больше солнечного сияния, чем на низменности. Это является важным преимуществом горных курортов.

    Самые солнечные часы суток в Средней Европе летом от 10 до 11 часов, зимой от 13 до 14 часов. На горных вершинах максимум приходится на два часа раньше. В тропиках наиболее богаты солнечным сиянием утренние часы - 8-9 часов.

    В больших городах загрязнение воздуха снижает продолжительность солнечного сияния до 20% и более по сравнению с сельской местностью.

    Условия облачности можно характеризовать также и числом ясных и пасмурных дней. Вот несколько экстремальных значений: Ифрена (Ливия) - 293 ясных дня в году, Термез (Узбекистан) - 260 дней, Имандра (Кольский п-ов) - 9 ясных дней в году, на горной станции Бен-Невис в Шотландии - 247 пасмурных дней в году, на восточном берегу острова Тайвань - 233 пасмурных дня.