Требования к геодезическому контролю факельных установок. Факельные системы. Факельные установки закрытого типа

Стрелкин Алексей Викторович, начальник отдела экспертов НК ООО «НТЦ «НефтеМетСервис»

Филин Владимир Евгеньевич, зам.генерального директора ООО «Техэкспертиза»

В статье описываются требования к разным элементам факельных установок, в том числе оголовкам, даны расчеты по оптимальному размеру ствола.

В настоящее время на объектах капитального строительства и технического перевооружения факельного хозяйства, согласно заданию на проектирование, проектируем факельную установку и ее обвязку. Значительная часть технологических установок (ДНС, УПС, УПВСН) подключена к существующей системе газосбора, таким образом, факельные установки служат только для аварийного сжигания попутного газа и для сжигания небольших объемов газа со сбросов с предохранительных пружинных клапанов (ППК).

Сбрасываемый предохранительными устройствами газ должен отводиться в систему или на факел (свечу). Предлагаю установку одного факела аварийного сжигания на существующей системе газосбора от группы технологических установок, а на технологической установке устанавливаем свечу для сжигания малых, периодических сбросов газа от предохранительных клапанов и при опорожнении технологических емкостей.

Согласно принципиальной схеме, продукция скважин поступает в сепаратор нефтегазовый поз. НГС, где при избыточном давлении 0,3 МПа осуществляется сепарация газа. Давление поддерживается регулирующим клапаном «до себя», который устанавливается на газовой линии. Газ, выделившийся в НГС, подается в газосепаратор. В газосепараторе ГС происходит отделение конденсата (капельной жидкости) от газа, после чего попутный нефтяной газ направляется до врезки в существующий газопровод в систему газосбора. В аварийном режиме (компрессорная по трассе или ГПЗ не принимает газ) газ поступает на проектируемую общую факельную установку для группы дожимных насосных станций размещаемою в районе ДНС-10. Факельная установка укомплектована стволом факельным, оголовком факельным со средствами контроля и автоматизации. Условия применения: газ по системе газосбора до факельной установки при ДНС-10 должен транспортироваться под своим давлением (без компрессора) и давление в точке подключения газопровода от технологической установки к общей системе газосбора должно быть не более 0,3 Мпа.

Газ, выделившийся в дренажной емкости при сбросе с предохранительных клапанов и при опорожнении емкостного оборудования (поз. ЕПн-1) отводится на свечу для сжигания малых, периодических сбросов газа.

Розжиг на свече происходит следующим образом, при срабатывании предохранительного клапана на емкости, датчик давления установленный на отводящем трубопроводе от ППК дает сигнал в систему розжига, также возможно подать сигнал на розжиг по положению затвора обратного клапана на свече.

Состав оборудования свечи:

1. Оголовок Dу80.

2. Ствол h=5,0м, Dу 100;

3. Клапан обратный;

4. Автоматизированная система управления розжигом и контролем пламени АСУ РКП. Типовое оборудование факельной установки на группу ДНС:

1. Факельная установка;

2. Емкость подземная дренажная для сбора конденсата с двумя насосами;

3. Электрифицированные задвижки

Особенности рассматриваемой установки:

Полная автоматизация процесса «электророзжиг – контроль пламени»;

Неограниченное количество и быстродействие запусков факела;


На следующем рисунке приведена расчетная схема факельной установки с оголовком прямоточного типа. Факельная установка содержит ствол факела 1, факельный оголовок 2 и входной штуцер 3. Зачастую для расчетов принимают часто используемое отношение:

- высота факельного ствола, м;

Диаметр факельного ствола, м.

При этом коэффициент местного сопротивления при повороте потока после входного штуцера 3 принимают ξ пов =1

При сжигании предельных легких углеводородов: метана, этана, пропана хорошо зарекомендовали себя оголовки прямоточного типа.


При сжигании тяжелых углеводородов, а особенно непредельных, без применения специальных средств подавления дыма (подача водяного пара, дополнительного воздуха) образуется гораздо меньше дыма при применении специальных струйных факельных оголовков. Данный оголовки отличаются от прямоточных тем, что сбросной газ выходит в атмосферу не через цилиндрический срез факельного оголовка, а через ряд сопел, при этом обеспечивается хорошее смешение с воздухом и, как следствие, хорошее, а зачастую и бездымное сгорание.

Исходными данными для расчета диаметра факельной установки являются: состав газа, его плотность ρ и избыточное давление ∆:

- атмосферное давление, Па.

Для газа можно применять модель несжимаемой жидкости, используя простые уравнения:

– скорость газа, м/с;

– площадь поперечного сечения, м 2 .

– диаметр проходного сечения.

Число Рейнольдса:

– кинематический коэффициент вязкости, стокс.

Современные факельные установки должны соответствовать следующим требованиям:

Бездымное или малодымное сжигание газа;

Быстрый и безотказный розжиг;

Возможность управления с отдаленного места (операторной);

Возможность передачи параметров работы установки оператору и на верхний уровень АСУТП, принятие автоматикой решений в случае выхода установки за рамки нормального режима.

В соответствии с существующей теорией горения газов, чем больше молярная масса газа, тем сложнее обеспечить бездымное сгорание. Особенно много дыма бывает у ненасыщенных углеводородных газов. Для обеспечения бездымного сгорания применяют много способов. В основном они направлены на обеспечение максимального перемешивания сжигаемого газа с воздухом. При этом, согласно данным экспериментов, чем выше скорость газа, исходящая из сопла, тем с большей молярной массой можно бездымно сжечь газ.

Эффективным способом дымоподавления является подача в зону горения пара, но в большинстве случаев такая возможность отсутствует. Не нашло большого применения и применение воздуходувок, так как при этом увеличиваются капитальные и эксплуатационные затраты.

Конструкция большинства производимых оголовков в настоящее время представляет собой трубу из жаростойкой стали с кинетическим газовым затвором внутри, который служит для исключения проникновения пламени в ствол установки, для чего необходимо применение продувочного газа.

На конце трубы установлены дежурные горелки и ветрозащитный козырек. Устройство розжига может быть как на оголовке, так и стволе, в том числе на основании ствола или вообще за ограждением установки. К дежурным горелкам при этом подходят запальные трубопроводы. Контроль пламени осуществляют термопарами, ионизационными зондами, оптическими, акустическими или газодинамическими датчиками. Каждый производитель по-своему решает, как организовать выход газа из оголовка и обеспечить бездымное сгорание сбросного газа.

Установленные в щели лопатки обеспечивают турбулентность потока, при котором и происходит перемешивание газа с воздухом. Площадь щели рассчитывается таким образом, чтобы скорость потока газа была в диапазоне от 0,2 до 0,5 скорости звука в газе для газов с плотностью менее 0,8 плотности воздуха и от 0,2 скорости звука до 120 м/с для газов с большей плотностью.

Если давление газа на входе в ствол недостаточно для обеспечения таких скоростей, то оголовок проектируется по типу горелки бытовой газовой плиты с диффузионным горением газа.

В таких горелках пропан или пропан-бутановая смесь, то есть газ с достаточно большой молярной массой сгорает бездымно.

Для обеспечения быстрого и безотказного розжига было решено отказаться от высоковольтных систем, в которых розжиг горючей смеси производится искрой в свече зажигания, в связи с затрудненным воспламенением холодной горючей смеси в зимнее время. После проведения экспериментов забраковали и самососную систему «бегущий огонь», при которой блок розжига с инжектором, готовящим горючую смесь газа с воздухом, находится на существенном расстоянии от дежурных горелок оголовка и дежурные горелки поджигаются фронтом пламени, проходящим по запальному трубопроводу.

Основная причина – сложность обеспечения стехиометрического состава горючей смеси в инжекторе (для каждого состава топливного газа необходимо свое соотношение «газ – воздух») и высокая вероятность потухания фронта пламени в длинных запальных трубопроводах.

Наилучшим и практически безотказным способом оказался розжиг калильной свечой, установленной внутри запальной горелки на расстоянии 100 мм от выхода горючей смеси. Розжиг калильной свечой хорошо зарекомендовал себя в жидкостных горелках, но для газовых систем стал применяться сравнительно недавно.

Для контроля пламени установили термопары (такой способ применяют ведущие зарубежные фирмы). Для обеспечения их длительной работы пришлось заказывать специальную конструкцию с увеличенной длиной и повышенной термостойкостью клеммной головки. С целью повышения срока службы системы розжига, не стали объединять дежурную и запальную горелки в единую запальную горелку, работающую в пилотном режиме (серийно выпускаемые запальные горелки изготавливаются, как правило, из обычной нержавеющей стали типа 12Х18Н10Т, не предназначенной для длительного воздействия пламени). То есть в пламени находятся только дежурные горелки из специальной жаростойкой стали, а запальные горелки после розжига дежурных гаснут, сохраняя свой ресурс.

Система розжига и контроля включает в себя:

Блок подготовки и подачи на дежурные и запальные горелки топливного газа, помещенный в теплоизолированный обогреваемый шкаф;

Инжектор, готовящий горючую смесь для дежурных горелок;

Блоки запальной и дежурной горелок с термопарой контроля пламени;

Систему АСУ на базе промышленного контроллера.

Система АСУ состоит из трех блоков: шкафа АСУ, панели местного розжига и пульта оператора. Шкаф АСУ с панелью местного розжига взрывозащищенных исполнений устанавливаются за ограждением установки, пульт оператора в операторной. Связь шкафа АСУ с пультом оператора и с верхним уровнем АСУТП осуществляется по интерфейсу RS-485.

Управление возможно в ручном и автоматическом режиме. Особенностью АСУ является то, что она не только осуществляет розжиг и контроль работы факельной установки, но и может принимать сигналы с датчиков всего факельного хозяйства: температуру и уровень конденсата в факельном сепараторе и дренажной емкости, расход и количество продувочного и сбросного газа с архивированием данных в режиме кольцевого буфера. Стоимость АСУ при этом возросла незначительно,

однако такие дополнительные функции позволят проектировщикам и заказчикам существенно уменьшить затраты на обустройство и время на проектирование.

При нарушении режима, например, потухании пламени, АСУ самостоятельно осуществит его розжиг. При уменьшения расхода продувочного газа ниже нормативного – подаст сигнал в АСУТП о необходимости подачи в факельный коллектор инертного газа. При переполнении дренажной емкости – подаст сигнал о необходимости включении насоса откачки.

Пульт оператора оснащен сенсорной панелью с удобной и понятной мнемосхемой, на которой изображаются данные с датчиков и наименование текущей операции процесса розжига с обратным отсчетом времени до ее окончания.

Объемный расход и скорость истечения, сжигаемого на факельной установке попутного нефтяного газа измеряется экспериментально, либо, при отсутствии прямых измерений, Wv рассчитывается по формуле:

Wv = 0,785 ∙ U · d02

U - скорость истечения ПНГ из выходного сопла факельной установки, м/с (по результатам измерений); d0 - диаметр выходного сопла, м (по проектным данным факельной установки).

При отсутствии прямых измерений скорость истечения принимается:

при периодических и аварийных сбросах:

Uзв - скорость распространения звука в ПНГ.

Массовый расход сбрасываемого на факельной установке газа рассчитывается по формуле:

Wg = 2826U · d02 ∙ pг

рг - плотность ПНГ, кг/м3.

Объемный расход продуктов сгорания, покидающих факельную установку:

W ПР = W v *W пс *(___________)

WV - объемный расход (м/с) сжигаемого на факельной установке;

WПС - объем продуктов сгорания;

Тг - температура горения.

Использованная литература:

1. ФЗ № 116.

2. ПБ 03-591-03. Правила устройства и безопасной эксплуатации факельных систем.

3. РУКОВОДСТВО ПО БЕЗОПАСНОСТИ ФАКЕЛЬНЫХ СИСТЕМ.

Факельные системы и установки от ООО «Салюс» разработаны и изготавливаются в соответствии с современными требованиями безопасности и учитывают в своей конструкции все основные принципы энергосбережения, которые обладают всеми необходимыми сертификатами.

Применение современных факельных систем:

  • Применяются на объектах сбора и подготовки продукции скважин нефтяных и газовых месторождений, объектах нефтехимической, нефтеперерабатывающей, химической и других отраслей промышленности, позволяют избежать применения морально и технически устаревших, металлоемких, дорогостоящих и зачастую небезопасных факельных систем;
  • Используются при аварийных, постоянных и периодических сбросах, выходе оборудования из строя, отключении электроэнергии, плановом ремонте, а также для сжигания паров и органических веществ;
  • Позволяют осуществлять высокоэффективное сжигание любых соотношений углеводородов, кислых и инертных газов за счет соответствующей модификации факельного оголовка;
  • Выпускаются открытого, закрытого и мобильного типа.

Преимущества факельных систем

  1. Уникальный струйный затвор

Уникальность. Конструкция факельных оголовков, используемых в системах СФС, включает в себя уникальный струйный затвор, не имеющий аналогов в мире и отменяющий необходимость в использовании лабиринтного затвора.

Ус транение горения внутри фак ельного оголовка. Факельный оголовок устраняет горение внутри, поскольку струйный затвор расположен у верхней кромки оголовка. Даже при минимальных расходах струйный затвор предотвращает попадание воздуха внутрь факельного оголовка.

Поэтому рекомендуемый нами расход затворного газа является фактическим расходом, при котором предотвращается внутреннее горение. Другие типы затворов, такие как лабиринтные затворы, не предотвращают внутреннее горение при рекомендуемых для них расходах затворного газа.

Без струйного затвора, расположенного у верхней кромки оголовка, происходит следующее:

  • горение внутри оголовка;
  • повышенный расход затворного газа для предотвращения внутреннего горения;
  • уменьшенный срок службы оголовка;
  • повышенный уровень теплового излучения.

Устранение горения внутри факельного ствола. При использовании лабиринтного затвора происходит попадание воздуха внутрь ствола и внутреннее горение. По результатам испытаний при расчетной скорости затворного газа и использовании лабиринтного затвора уровень содержания кислорода составляет 6% на дне лабиринтного затвора. При таком уровне кислорода не обеспечивается защита лабиринтного затвора или факельного оголовка. Образование воспламеняемой газовой смеси внутри лабиринтного затвора и факельного оголовка приводит к горению внутри и очень короткому сроку службы.

Струйный затвор устраняет горение внутри факельного ствола, поскольку струйный затвор расположен у верхней кромки оголовка, и значительно увеличивает срок его службы.

Значительное понижение расхода затворного газа. Использование струйного затвора значительно понижает потребление затворного газа. Так, например, для факельного оголовка диаметром 900 мм рекомендуемый расход затворного газа составляет:

Устранение необходимости в футеровке и дренаже. Футеровка, выложенная внутри лабиринтного затвора, обычно трескается и падает вниз, забивая дренажное отверстие. В результате конденсат и дождевая вода собираются внутри лабиринтного затвора.

Во­первых, сбрасываемый газ будет проходить через жидкую пробку, захватывая жидкость, что приведет к выбросу через факельный оголовок горящих капель. Во­вторых, при минусовых температурах жидкая пробка замерзает и не пропускает сбрасываемый газ. Это представляет собой чрезвычайную опасность и может вызвать аварию на предприятии. В связи с этим, для лабиринтного затвора необходим электро­ или пароподогрев.

Струйный же затвор находится у среза оголовка и таким образом устраняет необходимость в футеровке, дренаже и использовании электро­ или пароподогрева.

Устранение необходимости в частом профилактическом ремонте и обслуживании. В результате вышеуказанных проблем для лабиринтного затвора требуется более частый профилактический ремонт, а также проверка толщины стенок и удаление конденсата и футеровки со дна затвора.

Применение струйного затвора устраняет необходимость в частом профилактическом ремонте и обслуживании факельного оголовка и ствола.

Отсутствие коррозии и экономия металла на изготовлении затвора. Лабиринтный затвор обычно производится из низкоуглеродистой стали. В результате того, что в лабиринтном затворе собирается конденсат, зачастую с коррозионными частицами, а также происходит горение внутри, стенки лабиринтного затвора подвергаются сильной коррозии и прогорают насквозь.

Струйный затвор производится из такой же нержавеющей стали, что и верхняя часть факельного оголовка. В результате устраняются проблемы с коррозией и необходимость в частых профилактических ремонтах. Кроме того, значительно уменьшается расход металла на изготовление затвора.

  1. Уникальная конструкция факельного оголовка

Увеличение срока службы за счет использования конического козырька. Факельный оголовок снабжен специальным козырьком, защищающим верхнюю часть оголовка и создающим воздушную камеру. Козырек предотвращает соприкосновение пламени с оголовком при боковом ветре, когда пламя наклоняется к одной стороне оголовка. Таким образом, козырек снижает температуру воздействия на оголовок, тем самым значительно увеличивая его срок службы. Создание воздушной камеры с помощью козырька также является важным фактором.

Если одна сторона оголовка подвергается воздействию пламени в течение длительного времени, температура металла может повыситься до опасного уровня. Благодаря воздушной камере тепло отводится (рассеивается) от металла, поддерживается низкая температура поверхности и увеличивается срок службы. Еще одно преимущество использования козырька заключается в защите пламени дежурной горелки при боковом ветре, который может сорвать это пламя.

  1. Уникальная конструкция дежурных горелок

Улучшение безопасности и надежности за счет использования двойной системы розжига. Горелки могут поставляться в одном из трех исполнений:

  • горелки для электроискрового розжига;
  • горелки для розжига бегущим огнем;
  • горелки с двойным розжигом (электроискровой и бегущий огонь), обеспечивающие наибольший уровень безопасности работы установки.

Увеличение срока службы горелок и термопар. Срок службы дежурных горелок и термопар значительно увеличен благодаря использованию специальной улучшенной конструкции козырька горелки, а также благодаря тому, что дежурная горелка защищена коническим козырьком факельного оголовка. Кроме того, каждая термопара имеет свой собственный защитный кожух. Все вышеуказанное приводит к тому, что срок службы дежурных горелок и термопар значительно превышает срок службы горелок других конструкций.

Значительное понижение расхода пилотного газа. Благодаря уникальной конструкции дежурной горелки расход пилотного газа по меньшей мере в три раза меньше, чем расход газа в любых других горелках, что приводит к значительной годовой экономии.

Специальные оголовки для факельных систем

Для бездымного сжигания сбрасываемых газов используются специальные оголовки следующих типов:

  1. Факельные оголовки с подачей пара

В факельных системах с подачей пара в зависимости от диаметра оголовка пар может подаваться:

  • по центру,
  • по кольцу,
  • по кольцу и по центру,
  • по двум кольцам и по центру.

Для значительного уменьшения расхода пара и улучшения полноты сгорания в факельных оголовках применяется усовершенствованная система подачи пара. При этом пар подается в зависимости от расхода сбрасываемого газа как в центральную паровую форсунку, так и в малое и большое паровые кольца.

  1. Факельные оголовки с подачей воздуха

Факельные системы с подачей воздуха являются современным и высокоэкономичным способом обеспечения требуемой бездымности. При этом устраняется необходимость в дорогостоящем паровом коллекторе, его теплоизоляции и дренаже конденсата.

С учетом того, что устраняется необходимость в использовании пара, достигается очень значительная экономия, равная несколькиммиллионамрублей.

Факельная система с подачей воздуха включает в себя оголовок специальной конструкции, воздуходувку, датчик расхода и систему управления воздуходувкой.

  1. Скоростные факельные оголовки

Скоростные факельные оголовки представляют собой оголовки с одиночным или множественными соплами для реактивного смешивания с воздухом.

Скоростные факельные оголовки обеспечивают бездымность в верхнем диапазоне аварийного сброса, при этом не требуется подача пара или воздуха.

Факельный ствол

При использовании открытых факельных систем возможно применение следующих типов стволов:

  • мачтовые
  • самонесущие
  • со сдвоенныеми стволами
  • на растяжках

Самонесущие

Мачтовые

На растяжках

Со сдвоенными стволами

Стандартный комплект поставки факельной системы

  • факельная установка: факельный оголовок, факельный ствол, лестницы и площадки с ограждениями, дежурные горелки и система розжига и контроля пламени;
  • блок подготовки и редуцирования газа;
  • трубопровод пилотного газа;
  • факельный сепаратор или расширительная камера;
  • емкость дренажная с насосной станцией откачки жидкости;
  • система автоматизации и контроля.

Комплектность поставки определяется по согласованию с заказчиком, в комплект поставки могут входить дополнительные опции.

Выбор высоты факельного ствола

Производятся расчеты теплового, шумового воздействия горения на окружающую среду и расчеты рассеивания хвостовых газов для служб охраны труда и здоровья, экологических территориальных органов.

Данные по тепловому излучению для выбора высоты ствола

Факельные установки закрытого типа

Преимущества закрытых факелов:

  • нет дыма;
  • не нужен пар;
  • нет теплового излучения;
  • нет видимого пламени;
  • нет запаха;
  • низкий уровень шума;
  • простота в эксплуатации;
  • высокая надежность;
  • минимальное обслуживание.

Современные закрытые факельные системы имеют три очень важных преимущества:

  • Обеспечивают бездымное сжигание наиболее тяжелых трудносжигаемых газообразных отходов, а также влагосодержащих отходов с низкой теплотворной способностью без использования дорогостоящего пара, воздуходувок или открытых горелок и насадок;
  • Могут быть реконструированы в факельную систему термического окисления путем добавления регулятора тяги к свободной естественной тяге воздуха многофорсуночных многоструйных горелок;
  • В одной камере сгорания (общей или конструкции «камера в камере») возможно сжигание нескольких разных потоков газообразных или жидких сбросов.

Эффективность удаления продуктов сгорания газообразных и жидких отходов для факельных систем термического окисления превышает 99,9% – это лучший показатель сокращения выбросов окислов серы (SOx), окислов азота (NOx), а также других летучихканцерогенныхвыбросов.

Закрытая факельная система может быть оснащена одной из двух типов систем утилизации тепла: это может быть предварительный нагрев (через теплообменник) потока холодных отходов с целью более эффективного их сжигания или котел для получения водяного пара.

В закрытых факельных системах достигнут высочайший уровень безопасности и надежности. Это обеспечивается сочетанием передовых методов проектирования с современным высокотехнологичным производством.

В системах автоматизации закрытых факельных систем применены самые современные технические решения и разработки: автоматические схемы взаимоблокировок, жидкостные затворы, сканеры пламени, работающие в ультрафиолетовом диапазоне, отказоустойчивые системы запуска и останова, световая сигнализация, многоступенчатые горелочные головки со встроенными огнепреградителями и устройствами предотвращения детонации, а также дежурные горелки с дистанционными генераторами искры и УФ­сканерами.

Полностью автоматизированное многоступенчатое функционирование многофорсуночных, многоструйных горелок с естественной тягой обеспечивает надежное сокращение выбросов с объектов добычи нефти и газа, нефтеперерабатывающих, химических и нефтехимических заводов, а также других предприятий обрабатывающих и перерабатывающих отраслей промышленности.

(Постановление Госгортехнадзора РФ от 05.06.2003 N 56. Об утверждении Правил безопасности в нефтяной и газовой промышленности (Зарегистрировано в Минюсте РФ 20.06.2003 N 4812))

3.6.124. Установка и снятие заглушек должны регистрироваться в специальном журнале за подписью лиц, проводивших их установку и снятие, и проверяться лицами, ответственными за подготовку и проведение ремонта.

3.7. Требования к устройству и эксплуатации
факельных систем

3.7.1. Общие положения


3.7.1.1. Требования настоящего подраздела Правил безопасности распространяются на факельные системы объектов обустройства нефтяных, газовых и газоконденсатных месторождений.
3.7.1.2. Комплектность факельных систем, конструкция оборудования и оснастки, входящих в их состав, условия эксплуатации должны соответствовать требованиям, установленным Госгортехнадзором России.
Для дожимных насосных станций по согласованию с территориальными органами Госгортехнадзора России допускается упрощенная факельная установка для аварийного сжигания газа при ремонтных работах.
3.7.1.3. Проектирование, строительство и реконструкция факельных систем должны проводиться специализированными организациями.
3.7.1.4. Электроприемники факельных систем (устройства контроля пламени, запальные устройства, системы КИПиА) по надежности электроснабжения относятся к потребителям первой категории.
3.7.1.5. Запрещается направлять на установки сброса углеводородные газы и пары при объемной доле в них сероводорода более 8%.

3.7.2. Устройство факельных установок


3.7.2.1. Конструкция факельной установки должна обеспечивать стабильное горение в широком интервале расходов газов и паров, предотвращать попадание воздуха через верхний срез факельного ствола.
3.1.2.2. В составе факельной установки должны быть предусмотрены:
- - факельный ствол;

- - средства контроля и автоматизации;

- - подводящие трубопроводы газа на запал и горючей смеси;
- - дежурные горелки с запальниками;
- - устройство для отбора проб.
В составе упрощенной факельной установки для дожимных насосных станций должны быть предусмотрены:
- - факельный ствол;
- - оголовок с газовым затвором;
- - дистанционное электрозапальное устройство;
- - подводящие трубопроводы газа;
- - устройства для отбора проб;
- - средства контроля и автоматики.
3.7.2.3. Материалы факельного оголовка, дежурных горелок, обвязочных трубопроводов, деталей крепления следует выбирать с учетом их возможного нагрева от теплового излучения факела.
Обвязочные трубопроводы на участке факельного ствола необходимо выполнять из бесшовных жаропрочных труб.
3.7.2.4. Розжиг факела должен быть автоматическим, а также дистанционно управляемым.
3.7.2.5. Факельная установка должна быть оснащена устройством регулирования давления топливного газа, подаваемого на дежурные горелки.
3.7.2.6. Высота факельного ствола определяется расчетом по плотности теплового потока и с соблюдением условия исключения возможности загрязнения окружающей территории продуктами сгорания.
3.7.2.7. Конструкция крепления растяжек факельного ствола должна обеспечить их защиту от возможного повреждения, в том числе транспортными средствами.
3.7.2.8. Устройство лестниц и площадок должно обеспечивать удобство и безопасность при монтаже и ремонте факельного оголовка и другого оборудования, расположенного на разной высоте факельного ствола.

3.7.3. Требования к территории и сооружениям


3.7.3.1. Факельную установку следует размещать с учетом розы ветров, минимальной длины факельных трубопроводов и с учетом допустимой плотности теплового потока.
3.7.3.2. Расстояние между факельными стволами определяется из условия возможности производства ремонтных работ на одном из них при работающем соседнем факеле.
3.7.3.3. Расстояние между факельным стволом и зданиями, сооружениями объектов обустройства следует определять, исходя из допустимой плотности теплового потока и противопожарных норм.
3.7.3.4. Территория вокруг факельного ствола, а также всех сооружений факельной установки должна быть спланирована, к ним должен быть обеспечен подъезд.
3.7.3.5. Территория вокруг факельного ствола в радиусе его высоты, но не менее 30 м ограждается и обозначается. В ограждении должны быть оборудованы проходы для персонала и ворота для проезда транспорта. Количество проходов должно равняться числу факельных стволов, причем путь к каждому стволу должен быть кратчайшим.
3.7.3.6. При размещении факельных систем в малообжитых районах допускается вместо ограждения выполнять обвалование высотой не менее 1 м и шириной по верху не менее 0,5 м.
3.7.3.7. Все оборудование факельной установки, кроме оборудования факельного ствола, должно размещаться вне ограждения (обвалования).
3.7.3.8. Не допускается устройство колодцев, приямков и других углублений в пределах огражденной территории.

3.7.4. Требования к оборудованию, коммуникациям,
средствам автоматизации


3.7.4.1. Для отдельных факельных систем следует предусматривать один факельный коллектор и одну факельную установку.
Общие факельные системы должны иметь два факельных коллектора и две факельные установки для обеспечения безостановочной работы.
Специальные факельные системы не должны иметь связи с отдельными и общими факельными системами.
3.7.4.2. При сбросах в общую факельную систему газов, паров и их смесей, не вызывающих коррозии более 0,1 мм в год, допускается обеспечивать факельные установки одним коллектором.

ГОСТ Р 53681-2009

Группа Г43

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НЕФТЯНАЯ И ГАЗОВАЯ ПРОМЫШЛЕННОСТЬ

ДЕТАЛИ ФАКЕЛЬНЫХ УСТРОЙСТВ ДЛЯ ОБЩИХ РАБОТ НА НЕФТЕПЕРЕРАБАТЫВАЮЩИХ ПРЕДПРИЯТИЯХ

Общие технические требования

Oil and gas industry. Flare parts for general refinery and petrochemical service. General technical requirements


ОКС 75.200
ОКП 36 0000

Дата введения 2011-01-01

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "ВНИИНЕФТЕМАШ" (ОАО "ВНИИНЕФТЕМАШ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 23 "Техника и технологии добычи и переработки нефти и газа"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 1067-ст

4 В настоящем стандарте использованы нормы федеральных законов от 21 июня 1997 г. N 116-ФЗ "О промышленной безопасности опасных производственных объектов" и от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании"

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на факельные установки, используемые на производствах нефте- и газоперерабатывающей, химической, нефтехимической промышленности и на других опасных производственных объектах, связанных с обращением и хранением веществ, способных образовывать паро- и газовоздушные взрывопожароопасные смеси.

Стандарт предназначен для использования при проектировании, строительстве, эксплуатации, техническом перевооружении, консервации и ликвидации факельных установок. Требования не распространяются на факельные установки, введенные в эксплуатацию до выхода настоящего стандарта.

Стандарт не распространяется на факельные установки, применяемые на морских плавучих и стационарных нефтегазовых комплексах, предназначенных для бурения, добычи, подготовки, хранения и отгрузки нефти, газа, газового конденсата и продуктов их переработки, на факельные установки, используемые при бурении, обустройстве площадок нефтяных, газовых и газоконденсатных скважин.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 52630-2006 Сосуды и аппараты стальные сварные. Общие технические условия

ГОСТ 9.014-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.2.003-91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 1050-88 Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия

ГОСТ 4543-71 Прокат из легированной конструкционной стали. Технические условия

ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8509-93 Уголки стальные горячекатаные равнополочные. Сортамент

ГОСТ 8568-77 Листы стальные с ромбическим и чечевичным рифлением. Технические условия

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 19281-89 Прокат из стали повышенной прочности. Общие технические условия

ГОСТ 19903-74 Прокат листовой горячекатаный. Сортамент

ГОСТ 23118-99 Конструкции стальные строительные. Общие технические условия

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 27772-88 Прокат для строительных стальных конструкций. Общие технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 аварийные сбросы: Горючие газы и пары, поступающие в факельную систему при срабатывании предохранительных клапанов.

3.2 газовый затвор: Устройство для предотвращения попадания воздуха в факельную систему через оголовок при снижении расхода газа.

3.3 единичный факельный оголовок:

3.4 мультигорелочный факельный оголовок: Факельный оголовок, в котором имеется несколько горелочных устройств (или сопел), в которых используется энергия давления сбросного газа для инжекции дополнительного воздуха.

3.5 малодымный факел: Факел с оголовком с одним или несколькими соплами, обеспечивающий небольшое дымление. Он может быть использован дополнительно, когда требования по обеспечению бездымности невысоки.

3.6 опорная башня: Металлоконструкция, которая удерживает один или несколько факельных стволов в вертикальном положении.

3.7 периодические сбросы: Горючие газы и пары, направляемые в факельную систему при пуске, остановке оборудования, отклонениях от технологического режима.

3.8 постоянные сбросы: Горючие газы и пары, поступающие непрерывно от технологического оборудования и коммуникаций при нормальной их эксплуатации.

3.9 проскок пламени: Явление, характеризуемое уходом пламени внутрь корпуса горелки.

3.10 пилотная (дежурная) горелка: Горелка, которая работает непрерывно в течение всего периода использования факела.

3.11 срыв пламени: Явление, характеризуемое общим или частичным отрывом основания пламени над отверстиями горелки или над зоной стабилизации пламени.

3.12 самонесущая конструкция: Конструкция ствола, выполняющая свои функции и не несущая вертикальных нагрузок, кроме собственного веса и нагрузок как от веса всех узлов факельного ствола, так и от внешних факторов (ветра, снега и др.). Удержание факельного ствола в вертикальном положении осуществляется с помощью одного или нескольких ярусов канатных оттяжек.

3.13 стабильность пламени: Установившееся состояние, при котором пламя занимает неизменное положение по отношению к выходным отверстиям горелки.

3.14 факельный оголовок: Устройство с пилотными горелками, служащее для сжигания сбросных газов.

3.15 факельный ствол: Вертикальная труба с оголовком, с затвором (газовым или газодинамическим), средствами контроля, автоматизации, дистанционного электрозапального устройства, подводящих трубопроводов топливного газа и горючей смеси, дежурных горелок с запальниками.

3.16 факельный коллектор: Трубопровод для сбора и транспортирования сбросных газов и паров от нескольких источников сброса.

3.17 факельная установка: Совокупность устройств, аппаратов, трубопроводов и сооружений для сжигания сбрасываемых паров и газов.

3.18 фронт пламени: Слой, в котором происходит цепная реакция горения.

4 Классификация

Факельные установки следует изготовлять следующих типов:

- факельные установки с вертикальными стволами;

- факельные установки с горизонтальными стволами;

- закрытые (наземные) факельные установки.

4.1 Факельные установки с вертикальными стволами

4.1.1 Самонесущая конструкция ствола

В самонесущей конструкции факельная труба должна воспринимать все нагрузки как от веса всех узлов факельного ствола, так и от внешних факторов (ветра, снега и др.).

4.1.2 Конструкция ствола с оттяжками

Удержание факельного ствола в вертикальном положении необходимо осуществлять системой канатов, расположенных на одном или на нескольких ярусах. Канаты должны быть помещены в треугольный план для обеспечения надежной поддержки.

Количество ярусов должно быть определено проектом.

4.1.3 Конструкция ствола факела с опорной башней

4.1.3.1 Конструкция ствола факела с опорной башней должна удерживать один или несколько факельных стволов в вертикальном положении и обеспечивать механическую устойчивость опорной башни.

Опорная башня помимо фиксирующих опорных конструкций должна включать устройства для демонтажа факельных стволов, предназначенных для съема факельных оголовков, для разборки стволов и спуска секций с использованием спускоподъемных устройств. Допускается опускание ствола факела на землю (на специальные опоры) без его разборки.

4.1.3.2 Конструкция башни должна предусматривать дополнительные устройства, обеспечивающие демонтаж и спуск факельного оголовка на землю для технического обслуживания и ремонта.

Дополнительные устройства необходимо собирать в секциях, которые должны быть подняты или спущены с использованием направляющих и стационарных лебедок.

4.1.3.3 Требования к нагрузкам воздействия - по СНиП 2.01.07 .

4.1.3.4 Требования к защите строительных конструкций от коррозии - по СНиП 2.03.11 и ГОСТ 9.014 .

4.1.3.5 Требования к стальным несущим и ограждающим конструкциям - по СНиП II-23 , СНиП 3.03.01 и ГОСТ 23118 .

4.1.3.6 Требования к надежности металлоконструкций и дополнительных устройств - по ГОСТ 27751 .

4.1.3.7 Требования к материалам, применяемым при изготовлении конструкций, - по ГОСТ 380 , ГОСТ 4543 , ГОСТ 8509 , ГОСТ 8568 , ГОСТ 1050 , ГОСТ 19281 , ГОСТ 19903 , ГОСТ 27772 .

4.2 Факельные установки с горизонтальными стволами

Факельная установка с горизонтальным стволом состоит из горелочного устройства для сжигания сбросных газов и жидкостей, имеет систему дистанционного розжига и контроля параметров, систему противоаварийной защиты. Горелочное устройство устанавливают в обваловке.

4.3 Закрытые (наземные) факельные установки

4.3.1 Закрытые (наземные) факельные установки предназначены для бездымного сжигания сбросных газов и жидкостей возле поверхности земли. Конструкция закрытой факельной установки должна предусматривать наличие открытой сверху камеры сжигания с футерованными стенками, защищающими горелочные устройства от ветрового воздействия.

4.3.2 Факельная установка должна обеспечивать полное сжигание и отсутствие видимого пламени, а также снижение шума и теплового излучения до норм, установленных ПБ 03-591-03 * .
________________
приказа Ростехнадзора от 29 декабря 2012 года N 801 . Действует Руководство по безопасности факельных систем , утвержденное приказом Ростехнадзора от 26.12.2012 N 779

4.4 Конструкция факельных оголовков

4.4.1 Единичные факельные оголовки

Единичный факельный оголовок представляет собой устройство с единственным выходным соплом.

Единичные факельные оголовки могут быть бездымными или ограниченно бездымными.

4.4.2 Мультигорелочные факельные оголовки

Конструкция мультигорелочных факельных оголовков должна предусматривать два и более горелочных устройств, в которых используется энергия давления сбросного газа для инжекции дополнительного воздуха.

4.4.3 Бездымность должна быть обеспечена оптимальным соотношением газ/воздух, что достигают созданием следующих условий:

- высоким давлением газа;

- большими поверхностями газовых потоков.

4.5 Оголовки для бездымных факелов

4.5.1 Оголовки для бездымных факелов должны устранять дымление с помощью специального расположения потоков сбросного газа и атмосферного воздуха. Бездымное сжигание может быть обеспечено за счет принудительной подачи воздуха, пара и повышения давления сбросного газа, а также за счет использования других средств увеличения турбулентности для лучшего смешения горючего газа с воздухом.

4.5.2 Стабильность сжигания должна быть обеспечена при расходах сбросного газа в диапазоне расходов от нуля до его максимального значения в соответствии с ПБ 03-591-03 (подраздел 6.1) . Бездымность сжигания должна быть обеспечена при постоянных и периодических сбросах, составляющих до ~10% максимального. При использовании вентиляторного воздуха (или пара) эта величина может быть увеличена до 20%. Большие величины сбросов считают аварийными и бездымность сжигания не гарантируют.

4.5.3 В зависимости от состава и давления сбросного газа должна быть выбрана конструкция оголовка.

4.6 Факельные оголовки для бездымного сжигания углеводородных (в том числе непредельных углеводородов) газов в полном рабочем диапазоне расходов

4.6.1 Факельные оголовки должны обеспечивать разделение газового потока на ряд струй, направляемых под углом к оси факела, определяемым расчетным путем, и ряд дополнительных струй, которые закручивают инжектируемый поток воздуха. При этом стабилизация горения должна быть осуществлена струями газа и стабилизаторами-завихрителями.

4.6.2 Для усиления вихревого движения струй газа и потоков воздуха и их лучшего смешивания необходимо применять систему сопел для подачи водяного пара (возможна подача воздуха от компрессорной установки). Пламя факела должно быть устойчивым к ветровому воздействию. При этом должен отсутствовать контакт пламени с корпусом оголовка.

4.7 Ограниченно бездымные факелы

4.7.1 Ограниченно бездымные факелы имеют конструкцию, рассчитанную на сжигание углеводородных газов и паров испарения, которые не создают опасности дымления.

4.7.2 Ограниченно бездымные факелы могут быть использованы как дополнительные для расширения рабочего диапазона бездымных факелов.

4.8 Эндотермический факел (с подачей вспомогательного топливного газа)

4.8.1 Эндотермический факел должен использовать высококалорийный топливный газ для получения дополнительного тепла при сжигании низкокалорийных паров.

4.8.2 Эндотермический факел следует использовать с высококалорийным топливным газом или с мощными пилотными горелками при теплотворной способности потока газа ниже 1300-1800 ккал/нм.

5 Требования к факельным установкам с вертикальными стволами

5.1 Факельный оголовок

5.1.1 Конструкция факельного оголовка должна обеспечивать безопасное сжигание сбросного газа при максимально возможном расходе.

Оголовок должен работать на смеси топлива и воздуха при скоростях, турбулентности и концентрации, обеспечивающих надлежащие розжиг и устойчивое горение.

Розжиг основного потока сбросного газа необходимо производить пламенем пилотных горелок, которые зажигают системой розжига. Оголовок может иметь механическое устройство или другие средства установления и поддержания устойчивого пламени в рабочем диапазоне расходов.

5.1.2 Уровень шума, измеренный возле ограждения защитной зоны, - по ГОСТ 12.1.003 . Основную стабилизацию пламени и бездымную работу оголовка необходимо обеспечивать подачей вспомогательного пара, который управляет формированием дыма при сбросе большого количества углеводородных газов. Количество подаваемого пара должно быть пропорциональным количеству сбрасываемого газа и его состава.

Пар необходимо подавать в коллектор с соплами в верхней части оголовка для инжекции атмосферного воздуха в зону горения и защиты оголовка от воздействия пламени.

Паровой инжектор, расположенный по центру оголовка, необходимо использовать для смягчения внутреннего горения и удаления пламени из внутреннего объема и снижения температурных нагрузок.

5.2 Оголовки факелов с внутренней подачей пара/воздуха

В целях более полного смешения сбросного газа с воздухом возможна подача паровоздушной смеси в оголовок с помощью устройств, имеющих инжекторы, в которые подается водяной пар. Выпуск смеси пара/воздуха внутрь оголовка необходимо осуществлять на высокой скорости и обеспечивать увеличение скорости истечения сбросного газа.

5.3 Оголовки факелов с подачей вспомогательного воздуха

Оголовки факелов с подачей вспомогательного (дополнительного) воздуха используют в факелах, если требуется обеспечить бездымное горение. При этом вспомогательный воздух подают внутрь оголовка. Таким образом осуществляют предварительное смешение сбросного газа с воздухом. При истечении газовоздушной смеси из оголовка происходит и смешение с атмосферным воздухом. Этот способ необходимо применять при отсутствии источника пара.

5.4 Устройство ветрозащиты факельного оголовка

Для защиты пламени от ветрового воздействия используют ветрозащитные устройства. Допускается не применять эти устройства, если при эксплуатации используют для защиты вспомогательный пар или принудительную подачу воздуха.

5.5 Стабилизатор для оголовка факела

5.5.1 Стабилизатор для оголовка факела используют для предотвращения повреждения оголовка от касающегося пламени.

5.5.2 Стабилизатор должен обеспечить движение воздушного потока к оголовку, к коллекторам пара/воздуха для уменьшения силы воздействия ветра.

5.6 Требования к материалам

5.6.1 Все части факела должны быть стойкими к воздействию температуры. Верхняя часть факельного оголовка должна быть изготовлена из жаростойких сплавов по ГОСТ 5632 . Допускается изготовлять нижнюю часть оголовка (вместе с соединительным фланцем) из менее качественных марок нержавеющей стали.

5.6.2 Жаропрочные футеровочные материалы используют для оголовков большого диаметра (более 1000 мм) для защиты от внутреннего горения. Материалы должны быть стойкими к высокой температуре и к ее резким изменениям. Конструкция футеровки должна обеспечивать:

- стойкость к температурам рабочего диапазона, возможность циклической работы и ее восприимчивость к увлажнению;

- возможность использования различных способов закрепления огнеупора.

5.6.3 Внутренний канал оголовка должен иметь жаропрочную футеровку со специальными креплениями. При проектировании необходимо учитывать последствия разрушения футеровки, в том числе возможность падения в ствол плотного огнеупора и затруднение прохождения потока сбросного газа, падение на землю внешнего огнеупора.

5.7 Требования к монтажу и демонтажу

5.7.1 Для ремонта факельные оголовки должны быть демонтированы. Все элементы трубной обвязки должны быть устроены так, чтобы облегчить демонтаж.

5.7.2 Удаление и замену факельного оголовка выполняют с использованием кран-балки. В случаях высоких факелов (при отсутствии кранов достаточной высоты) необходимо предусматривать выдвигающуюся кран-балку на опорной башне факела. Кран-балка должна быть установлена ниже верхней площадки (или ниже газового затвора) и быть недоступной для воздействия стелющегося пламени. Должно быть предусмотрено подъемное устройство для установки кран-балки в позицию подъема.

5.8 Требования к системе розжига

5.8.1 Устройство дистанционного розжига должно обеспечить розжиг пилотных горелок факела, контроль наличия пламени на них и подачу аварийного сигнала в операторскую о прекращении работы пилотных горелок.

5.8.2 При сбое в подаче воздуха система розжига должна автоматически возвращаться к процессу предварительного смешения газа с воздухом.

5.8.3 При необходимости должно быть предусмотрено наличие резервного комплекта системы розжига.

5.8.4 В обоснованных случаях допускается использовать прямое искровое зажигание факела.

Для обеспечения устойчивой работы систем розжига необходимо использовать надежный источник топлива. Предпочтительно использовать природный газ.

5.8.5 Система розжига должна работать устойчиво в течение срока службы, установленного изготовителем.

5.9 Требования к оборудованию зажигания

5.9.1 Для розжига пилотных горелок применяют следующие типы систем воспламенения:

- система искрового зажигания в туннеле пилотной горелки;

- система искрового зажигания смеси газ/воздух до туннеля пилотной горелки;

- горелка системы факельного сжигания газа/сжатого воздуха;

- горелка с предварительным получением горючей смеси системы факельного сжигания газа.

5.9.2 Устройство искрообразования системы искрового зажигания смеси газ/воздух до туннеля должно быть расположено вблизи туннеля пилотной горелки, но не более чем в 7,5 м от него. При этом срок работы пилотной горелки может быть сокращен из-за незащищенности устройства искрообразования от пламени самой пилотной горелки или факела. Допускается размещение устройства искрообразования в туннеле.

5.9.3 Искровое зажигание смеси газ/воздух до пилотной горелки может быть использовано для поджига горючей смеси до выхода пламени из туннеля. При этом должен быть исключен проскок пламени и обеспечено устойчивое горение.

5.9.4 В системе факельного сжигания газовоздушной смеси сжатый воздух и топливный газ пропускают через диафрагмы в смесительную камеру. Газовоздушная смесь при этом должна быть горючей и не должна детонировать при воспламенении. Фронт пламени должен поступать по трубопроводу в туннель пилотной горелки и обеспечивать ее розжиг.

5.9.5 В системе искрового зажигания смеси газ/воздух электрод, способный к высокоэнергетическому емкостному разряду, должен быть расположен в восходящем потоке смеси в трубопроводе к пилотной горелке факела или в обводном трубопроводе между пультом, расположенным на границе защитной зоны, и выходом горелки.

Электрод в этой системе не должен быть расположен в непосредственной близости к пламени.

5.9.6 Пилотную горелку сжатого воздуха системы факельного сжигания газа необходимо подключать к панели управления. Конструкция панели управления должна предусматривать наличие устройства зажигания и смотровое окно. В качестве устройства зажигания могут быть использованы свеча зажигания или пьезоэлектрический электровоспламенитель.

Топливные и воздушные датчики давления должны быть заполнены жидкостью или быть с демпферами для предотвращения повреждений датчиков от импульсов давления. Канал устройства, образующего искру, должен быть спроектирован для того же давления, что и транспортирующий трубопровод. Допускается использовать горелку системы факельного сжигания газа для розжига двух и более пилотных горелок.

5.9.7 Пилотные горелки системы факельного сжигания газа могут быть связаны с коллектором линиями, оснащенными клапанами, по каждой из которых зажигается одна пилотная горелка. В этом случае каждая пилотная горелка должна зажигаться индивидуально. При этом фронт пламени должен быть таким, чтобы можно было разжечь все пилотные горелки при одиночном прохождении фронта пламени. Устройство трубопроводных линий должно соответствовать требованиям нормативных документов по безопасной эксплуатации технологических трубопроводов.

5.9.8 Пилотную горелку системы факельного сжигания газа используют для розжига одной пилотной горелки. Длина трубопровода, соединяющего горелку с инжектором, не должна превышать 90 м. Систему, включающую пилотную горелку и трубопровод с инжектором, монтируют на стволе факела.

5.9.9 Минимально допустимое число систем розжига для большинства факельных оголовков определено нормативными документами изготовителя. Для негазообразных углеводородов или углеводородных/инертных смесей с теплотворной способностью менее 2700 ккал/нм используют дополнительные системы розжига с более высокой тепловой мощностью.

5.9.10 Прямой электровоспламенитель устанавливают непосредственно на пилотной горелке по решению разработчика проекта.

5.10 Контроль пламени

5.10.1 Система контроля пламени должна подтвердить, что пилотные горелки находятся в зажженном состоянии.

5.10.2 Термопреобразователи должны определять наличие пламени пилотной горелки и при этом не подвергаться его воздействию.

5.10.3 Ионизационные детекторы должны реагировать на изменение проводимости между электродами, находящимися в пламени, и выдавать сигнал о наличии пламени на пилотной горелке.

5.10.4 В оптической системе контроля наличия пламени следует применять два типа оптических датчиков - ультрафиолетовые и инфракрасные.

5.10.5 В акустических системах необходимо применять детекторы, контролирующие звук, характерный для работающего горелочного устройства. Требования к диапазону частот, генерируемых пламенем горелочного устройства, устанавливают в документах изготовителя.

6 Требования к факельным установкам с горизонтальными стволами

6.1 Горелочное устройство факельной установки с горизонтальным стволом должно обеспечивать тонкое распыление промстоков, подаваемых для огневого обезвреживания, и смешение с воздухом и горючим газом.

6.2 Горючий газ должен поступать в количествах, необходимых для образования стабильного факела.

6.3 Конструкция горелочного устройства должна обеспечивать достаточную инжекцию атмосферного воздуха для бездымности сжигания.

6.4 Факельные установки с горизонтальными стволами оснащают системой защиты, которая отсекает газ и промстоки при отклонении от рабочих значений технологических параметров, установленных проектной документацией.

6.5 Горелочное устройство должно иметь систему пилотных горелок, обеспечивающих стабильное горение факела.

7 Требования к закрытым (наземным) факельным установкам

7.1 Камеры сжигания в закрытых (наземных) факельных установках должны иметь ограждение, выполненное так, чтобы снизить ветровое воздействие на процесс горения и предотвратить несанкционированный доступ воздуха.

7.2 В процессе эксплуатации закрытых (наземных) факельных установок обеспечивают контроль количества и качества воздуха, подаваемого в камеру сгорания, и температуру потока дымовых газов, покидающих камеру.

7.3 При достижении максимальной нагрузки первой ступени должна включаться следующая система горелок для сжигания сбросного газа с большим расходом.

7.4 Размеры камеры сгорания необходимо определять характеристиками конструкции горелочного узла. Размеры камеры сгорания определяют в зависимости от объемного выделения тепла, среднее значение которого должно быть равным 310 кВт/м.

7.5 Горелки и системы управления горелками для включенных пилотных горелок должны быть спроектированы на указанные газовые расходы и расходы жидкости, установленные проектной документацией для того, чтобы обеспечить бездымное сжигание.

7.6 Конструкция горелочного узла должна обеспечивать устойчивое горение для всех условий потока сбросного газа в рабочем диапазоне, не вызывать пульсаций горения, которые могут вызвать резонансные колебания корпуса камеры сжигания.

7.7 Конструкция наземного факела должна обеспечивать необходимый воздушный поток в камеру сгорания и выход для потока горячих дымовых газов из камеры сгорания. Для снижения температуры продуктов сгорания необходимо предусмотреть поступление избыточного воздуха. Воздушный поток в камеру сгорания должен быть обеспечен естественной или принудительной тягой.

7.8 В конструкции с принудительной подачей воздуха должны быть предусмотрены устройства регулировки, обеспечивающие тягу, исключающую искажение пламени факела и появление вибрации.

7.9 В процессе эксплуатации должен быть обеспечен однородный воздушный поток ко всем горелкам. Заграждающие жалюзи для впуска воздуха к горелкам должны обеспечивать равномерное распределение воздушного потока по горелкам.

7.10 Конструкция заграждения должна обеспечивать защиту персонала от излучения пламени и от наружных поверхностей камеры сгорания.

7.11 Конструкция вводов воздуха в ограждении должна обеспечивать уровень шума, не превышающий 80 дБА на расстоянии 1,0 м от мест ввода воздуха.

8 Технические требования к оборудованию факельных установок

8.1 Оборудование должно соответствовать требованиям ПБ 09-540-03 * , разделов: III "Требования к обеспечению взрывобезопасности технологических процессов" ; V "Аппаратурное оформление технологических процессов" ; VI "Системы контроля, управления, сигнализации и противоаварийной автоматической защиты технологических процессов" ; VII "Электрообеспечение и электрооборудование взрывоопасных технологических систем" ; XI "Обслуживание и ремонт технологического оборудования и трубопроводов" .
________________
* На территории Российской Федерации документ не действует на основании приказа Ростехнадзора от 11 марта 2013 года N 96 . Действуют Федеральные нормы и правила в области промышленной безопасности "Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств" , здесь и далее по тексту. - Примечание изготовителя базы данных.

8.2 Общие требования по безопасности к оборудованию и органам управления - по ГОСТ 12.2.003 .

8.3 Требования к климатическому исполнению оборудования - по ГОСТ 15150 .

8.4 Требования к оборудованию, работающему под давлением, - по ГОСТ Р 52630 .

8.5 Оборудование в процессе эксплуатации должно исключать образование газовоздушной смеси во внутреннем объеме ствола факела. Должно быть исключено поступление воздуха через оголовок факела в ствол и далее в факельный коллектор. В процессе эксплуатации должна быть осуществлена непрерывная продувка инертным или топливным газом. Должны быть предусмотрены необходимые блокировки (определяемые проектом оборудования), предотвращающие поступление атмосферного воздуха в факельный ствол при разрежении в основании факельного ствола более 1000 Па и подачу инертного газа в факельный коллектор при прекращении подачи продувочного газа.

8.6 Конструкция оборудования должна предусматривать наличие защитных устройств или аппаратов, препятствующих поступлению атмосферного воздуха в факельный коллектор. Данные устройства и (или) аппараты располагают в оголовке или в линии сбросного газа.

8.7 В качестве защитных устройств используют диффузионные (газостатические затворы), скоростные (газодинамические) затворы, жидкостные затворы и в необходимых случаях - огнепреградители.

8.8 Башенная опора факела должна быть защищена от прямых ударов молнии путем установки на верхней отметке сооружения молниеприемника и обеспечения его электрического контакта с заземлением (возможно через металлоконструкции опор с выполнением соответствующих конструктивных мероприятий). Требования к устройству молниезащиты - по СО 153-343.21.122 .

8.9 Дневная маркировка и светоограждение опоры должны быть выполнены в соответствии с требованиями РЭГА РФ-94 , ПБ 03-591-03 . При выполнении системы светоограждения на верхней площадке следует устанавливать переносные светосигнальные приборы.

8.10 Факельная установка должна быть снабжена приборами, контролирующими технологические параметры с постоянной регистрацией и выводом показаний, - по ПБ 03-591-03 .

8.11 В устройстве дистанционного розжига факела должно быть предусмотрено автоматическое регулирование давления топливного газа и воздуха.

8.12 В рабочем режиме для факельной установки должно быть обеспечено автоматическое регулирование расхода продувочного газа для поддержания его расчетного значения.

9 Требования безопасности

9.1 Перед каждым пуском факельная система должна быть продута азотом, с тем чтобы содержание кислорода внутри (у основания) факельного ствола не превышало 1,0% объемн. (требование ПБ 08-624-03 *) .
________________
* На территории Российской Федерации документ не действует на основании приказа Ростехнадзора от 12 марта 2013 года N 101 . Действуют Федеральные нормы и правила в области промышленной безопасности "Правила безопасности в нефтяной и газовой промышленности" ., здесь и далее по тексту. - Примечание изготовителя базы данных.


При сбросах водорода, ацетилена, этилена и окиси углерода объемное содержание кислорода не должно превышать норм, установленных ПБ 03-591-03 .

Замер концентрации кислорода необходимо проводить внутри факельного ствола у его основания.

9.2 Для недопущения проникновения воздуха в факельную систему предусматривают подачу продувочного газа с интенсивностью, которая обеспечивает скорость потока в соответствии с требованиями ПБ 03-591-03 , препятствующую поступлению воздуха. Расход продувочного газа устанавливают проектной документацией.

9.3 При подготовке и проведении ремонтных работ должны быть приняты меры, обеспечивающие безопасность проведения этих работ в соответствии с действующими нормативными документами.

9.4 Факельная установка должна соответствовать требованиям взрывопожаробезопасности, указанным в ПБ 08-624-03 . Обеспечение первичными средствами пожаротушения - в соответствии с действующими нормами.

10 Требования охраны окружающей среды

10.1 Факельная установка должна обеспечивать устойчивое горение в полном диапазоне расходов сбросного газа, бездымное сжигание постоянных и периодических сбросов.

10.2 Факельная установка должна обеспечивать безопасную плотность теплового потока в защитной зоне и на поверхности расположенного вокруг оборудования.

Зоны и безопасные уровни тепловых потоков определяют в соответствии с требованиями ПБ 03-591-03 .

10.3 При проектировании должны быть использованы конструктивные решения, обеспечивающие полноту сжигания сбрасываемых углеводородных газов и паров, для чего должны быть использованы конструктивные решения, обеспечивающие инжекцию атмосферного воздуха и необходимое смешение сбросного газа с воздухом.

10.4 При проектировании факельного устройства следует учитывать высоту, на которой происходит выброс вредных продуктов сгорания, чтобы исключить возможное загрязнение окружающей среды.

11 Требования к хранению

11.1 Оборудование, аппараты и металлоконструкции факельной установки (без средств автоматизации) перед хранением должны быть подвергнуты консервации.

11.2 Хранение оборудования, аппаратов и металлоконструкций факельной установки необходимо осуществлять в условиях 7(Ж1) по ГОСТ 15150 . Приборы и средства автоматизации необходимо хранить в соответствии с требованиями инструкций по эксплуатации изготовителей.

12 Утилизация

Оборудование факельной установки перед отправкой на утилизацию (на вторичную переработку) необходимо освободить от рабочих сред по технологии предприятия-владельца, обеспечивающей безопасное ведение работ, а также осуществить разборку и разделку оборудования с сортировкой металла по типам и маркам.

Проектируем и изготавливаем факельные установки с обеспечением бездымности сжигания газа, в вертикальном, горизонтальном и мобильном исполнении. Изготавливаем свечи рассеивания, производим строительно-монтажные, шеф-монтажные и пусконаладочные работы факельного оборудования.

Концепция и достигнутый результат в изготовлении бездымных факельных установок.

1. Бездымность работы факельного оголовка в диапазоне расходов от 0 до 3 700 000 м 3 /сут. и плотности сжигаемого газа до 1,4 кг/м 3 (с содержанием тяжелых фракций) только с помощью конструкции оголовка, без применения дополнительного оборудования. Срок службы 20 лет.

Обеспечение бездымности факельного оголовка с помощью дополнительного оборудования при больших сбросах, до 10 000 000 м 3 /сут. и большой плотности сжигаемого газа, в том числе, с содержанием нефтяного тумана и капельных ШФЛУ. Срок службы 20 лет

2. Универсальность дежурной горелки, возможность ее работы на любом составе и параметрах сбросного газа, используя его как топливный, в том числе, при большом содержании инертных (Азота). Срок службы до 20 лет.

3. Полная автоматизация процессов запуска и работы факельной установки без вмешательства оператора. Гарантированность розжига и контроля пламени. Простота в обслуживании.

4. Использование современных технологий и передовых разработок для обеспечения надежности и увеличения срока службы факельной установки.

5. Индивидуальные технические решения при изготовлении факельной установки, применимые к параметрам и условиям для каждого объекта Заказчика.

Компания обепечивает полное соответствие требованиям и нормативам в производстве факельных установок для объектов нефтегазовой отрасли:

  • ГОСТ 12.1.007-76 «ССБТ. Вредные вещества. Классификация и общие требования безопасности».
  • ВНТП 3-85 «Нормы Технологического проектирования объектов сбора, транспорта, подготовки нефти, газа и воды нефтяных месторождений».
  • «Правила безопасности в нефтяной и газовой промышленности». Приказ Федеральной службы по экологическому, технологическому и атомному надзору №101 от 12 марта 2013г.
  • «Руководство по безопасности факельных систем». Приказ Федеральной службы по экологическому, технологическому и атомному надзору №779 от 26.12.2012г.
  • ГОСТ Р 53681-2009, п.10.1., п.4.4.3.

Вертикальные факельные установки.

Состав, описание оборудования, варианты исполнения.

В стандартном исполнении, вертикальная факельная установка состоит из основных частей:

1. Оголовок факельный.

2. Ствол факельный.

3. Автоматизированная система управления розжигом и контролем пламени факельной установки.

Факельный оголовок бездымного горения

Производимые нашей компанией факельные оголовки обеспечивают бездымность и экологичность сжигания газа благодаря конструкции эжекционного типа. Обеспечиваются газодинамические режимы соотношения сжигаемого газа и эжекции атмосферного воздуха, для создания условий полного сгорания сбросного газа.

При сбросных газах с малой и средней плотностью, до 1,2 - 1,4 кг/м 3 , в зависимости от компонентов в составе газа и других его параметрах, бездымность сжигания обеспечивается без применения дополнительных технических средств, только за счет конструкции факельного оголовка. Смотрите фото ниже:


При большом содержании «тяжелых» компонентов в составе сбросного газа, бездымность сжигания обеспечивается за счет подачи дополнительного наддува воздуха в область горения, с одновременным использованием специальной конструкции факельного оголовка. Данная технология обеспечивает максимальное сгорание «тяжелого» газа и тем самым, бездымность факельного оголовка.

Долговечность работы факельного оголовка обеспечена за счёт самостоятельного эффективного охлаждения его конструкции атмосферным воздухом и рядом других технических решений, использующих законы аэро- и термодинамики. Срок службы 20 лет.

Совмещеные факельные оголовки

В зависимости от технических условий Заказчика, наша компания изготавливает факельные оголовки, обеспечивающие одновременное сжигание газа от двух источников сброса. К примеру, одновременное сжигание технологического сброса газа низкого (ФНД) и высокого (ФНД) давления.

Модификация факельных оголовков и расчет конструкции при изготовлении.

Перед изготовлением факельного оголовка, в зависимости от параметров сжигаемого газа, ООО "ТПП НЕФТЕАВТОМАТИКА" производит расчет конструкции оголовка для обеспечения бездымного сжигания сбросного газа, а так же, расчеты проходных сечений и прочностной расчет конструкции.

Учитывая вышеописанную практику расчетов, изготавливаемые компанией оголовки делятся на несколько стандартных модификаций:

Струйные факельные оголовки, с расходом сжигаемого газа до 200 000 м 3 /сут. (низкого давления);

Струйные факельные оголовки, с расходом сжигаемого газа до 900 000 м 3 /сут. (высокого давления);

Совмещённые струйные факельные оголовки (совмещенные низкого и высокого давления);

Прямоточные вихревые, с расходом сжигаемого газа до 3 500 000 м 3 /сут.;

С дополнительной подачей воздуха высокого давления до 8 кПА, с расходом сжигаемого газа до 10 000 000 м 3 /сут.

Все модификации оголовков факельных соответствуют по бездымности требованиям Правил Безопасности от 26.12.2012г. N779 и ГОСТ Р 53681-2009.

Факельный ствол

В зависимости от технического задания и особенностей объекта Заказчика, ствол факельный изготавлявается в нескольких вариантах:

1. Одиночный факельный ствол, с лестницами, переходами и площадками обслуживания. Диаметр ствола от Ду100 до Ду1200мм, высота ствола от 10 до 100м. Самое распространенное изготовление конструкции факельного ствола для большинства факельных установок.

2. Сдвоенный факельный ствол, с лестницами, переходами и эллипсными площадками обслуживания сразу для двух стволов. Диаметры совмещенных стволов от Ду100 до Ду1200мм, высота стволов от 10 до 100м. На практике конструкция используется для изготовления совмещенной факельной установки.

3. Ствол внутри ствола, с лестницами, переходами и площадками обслуживания. Диаметр внешнего ствола от Ду100 до Ду1200мм, высота ствола от 10 до 80м. Конструкция используется для изготовления совмещенной факельной установки. Главная цель - уменьшение парусности (ветровой нагрузки) на всю конструкцию ствола. Применяется очень редко, ввиду сложности и затратности изготовления, при совместно размещаемом на стволе воздуховоде, для дополнительной подачи воздуха высокого давления на оголовок факельный (дополнительная ветровая нагрузка на ствол).

4. Ствол с опорой башенного типа в виде ферменной конструкции. Применяется в случае ограниченности площадки факельной установки для монтажа ветровых растяжек ствола. Применяется редко, ввиду затратности изготовления фермы башенного типа, высокой стоимости транпортировки элементов конструкции и сложности монтажа на объекте Заказчика.

Для определения конструкции ствола, высоты, диаметра, толщины стенок несущих элементов, количества ветровых растяжек и их исполнение, а так же, других данных, в зависимости от параметров сжигаемого газа, климатических и эксплуатационных особенностей на объекте, ООО "ТПП НЕФТЕАВТОМАТИКА" производит прочностной и ветровой расчет конструкции, расчет высоты факельной установки с учетом теплового излучения сжигаемого газа.

Автоматизированная система управления розжигом и контролем пламени.

На примере вертикальной факельной установки мы представим подробное описание автоматизированной системы управления (АСУ), которая применяется во всех видах факельных установок производимых нашей компанией.

Система управления состоит из нескольких блочных элементов:

1. Дежурная горелка.

2. Токовод.

3. Блок высоковольтный электрического зажигания.

4. Пульт управления единый. В раздельном исполнении - пульты управления местный и дистанционный.

5. Блок управления топливным газом.

Универсальность дежурной горелки заключается в возможности ее применения при отсутствии топливного газа на факельной установке. Разработанная и успешно применяемая на практике, дежурная горелка надежно работает на сжигаемом попутном нефтяном газе, без специальной подготовки, без сепарации и без осушения.

Гарантирована надёжность розжига и работоспособность дежурной горелки при содержании жидких дисперсных составляющих, в кислото-агрессивных средах и при большом содержании инертных в составе сбросного газа, используемого как топливный.

Стабильная работа дежурной горелки обеспечена при диапазоне давления газа от 0,02 МПа до 0,3 МПа. В процессе эксплуатации регулировки по расходам топливного газа не требуются. Средний расход составляет 3-4 м 3 /час при 0,1-0,3 МПа.

За счет применения аэродинамических трубчатых элементов конструкции происходит постоянное, эффективное охлаждение зон высоких температур.

Обеспечен прямой автоматический электророзжиг и контроль пламени при скорости ветра до 35-40 метров в секунду.

Обеспечена стабилизация горения газа с содержанием азота до 85%!

Токовод.

Предназначен для передачи высокого напряжения от блока высоковольтного на электрод дежурной горелки. Выполнен в виде трубчатой конструкции для защиты внутри нее высоковольтной жилы от высоких температур при работе факельного оголовка и атмосферных осадков.

Блок высоковольтный электрического зажигания.

Служит источником высокого напряжения для обеспечения качественного электророзжига на дежурной горелке. Имеет компактные габариты, размещается на факельном стволе, в зоне пониженных тепловых излучений.

Пульт управления единый.

В раздельном исполнении - пульты управления местный и дистанционный.

Пульты управления выполняют весь комплекс функций по автоматическому запуску и поддержанию непрерывной работы факельной установки без участия оператора. Полный функционал управления и получения информации возможен с любого пульта, местного или дистанционного. Вмешательство оператора необходимо только при проведении пусконаладочных или регламентных работ.

Пульт местного управления и контроля обычно размещается на факельной площадке, за обваловкой и монтируется вертикально на стойки или конструкции. Дистанционный пульт размещается в операторной или АСУТП. При поставке единого исполнения пульта управления, он может размещаться в любом месте, за обваловкой на факельной площадке или в операторной (АСУТП).

В зависимости от варианта исполнения, в любом случае, пульт управления единый или дистанционный дополнительно обеспечивают передачу необходимой информации по протоколу Modbus с интерфейсом RS485 или через «сухие» контакты реле в АСУТП, на любое расстояние.

Система автоматизации факельной установки обеспечивает быстродействие и надёжность розжига дежурных горелок за одну-две секунды. Управление системой возможно в ручном и автоматическом режиме, как с факельной площадки, так и с операторной.

В автоматическом режиме, с момента запуска факельной установки происходит:

Автоматический розжиг без участия оператора;

Автоматический контроль пламени дежурных горелок;

Автоматический розжиг в случае погасания пламени дежурной горелки.

Конструкция электрического розжига.

В конструкции системы управления розжигом и контролем пламени факельной установки используются научные разработки авиационной промышленности и их практическое многолетнее применение.

Обобщенно, наша дежурная горелка состоит из корпуса, в виде трубчатой конструкции (заземленной вместе с факельной установкой), внутрь которой подается топливный газ. В центре этой «трубы» размещен электрод, на который подается высокое напряжение до 20 тыс. вольт с высоковольтного блока.

При включении зажигания в ручном или автоматическом режиме создается мощная электрическая дуга между электродом и корпусом дежурной горелки. Потребляемая мощность при этом сравнима с домашней электрической лампой, примерно 100Вт. Происходит гарантированный розжиг газа на дежурной горелке и факельном оголовке. В применяемой нами системе розжига, выделяемая на зажигание электрическая энергия увеличивается до 500%, при сохранении массо габаритных показателей, что позволяет зажигать любые смеси ПНГ, в том числе и при высоком содержании инертных газов.

Конструкция контроля наличия пламени.

Контроль наличия пламени на дежурной горелке основан на физическом принципе «детекторного эффекта пламени». Контроль пламени происходит по факту наличия непосредственно самого тела пламени (плазмы пламени).

Как это происходит:

При включении контроля пламени в ручном или автоматическом режиме с помощью нашей автоматики (пульт управления), в пространстве между центральным электродом и корпусом дежурной горелки происходит ионизация пламени (пламя на дежурной горелке горит). В плазме пламени начинают преобладать положительные ионы (положительные носители заряда), со значительно меньшим количеством отрицательных зарядов, в виде электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд. В итоге, при подаче переменного напряжения на центральный электрод дежурной горелки по отношению к массе (корпусу) дежурной горелки, суммарный потенциал межу центральным электродом и корпусом дежурной горелки приобретает преимущественно положительный заряд.

В итоге, при наличии пламени на дежурной горелке, между центральным электродом и корпусом дежурной горелки появляется положительный ток ионизации, с устойчивым потенциалом, достаточным для восприятия сигнала нашей автоматикой и выводом на панель пульта управления "сигнала о наличии пламени".

Данный сигнал, так же, используется автоматикой в автоматическом режиме работы факельной устанвоки (автоматическом розжиге в случае отсутствия пламени).

В данной системе контроля пламени полностью отсутствуют элементы специальных конструкций и датчиков (например, защитные карманы для термопар и сами термопары, фотоприемники и фотодатчики), в том числе в зоне повышенных температур. «Ломаться и гореть» здесь просто не чему.

Система контроля пламени надежна и применяется десятки лет на авиационных и ракетных двигателях отечественного производства. Время выдачи сигнала о наличиии или отсутствии пламени – доли секунды.

В целом о дежурной горелке.

В конструкции дежурной горелки используется один центральный электрод, в котором одновременно совмещены функции «зажигания и контроля пламени».

В результате, комплект дежурной горелки, устанавливаемый на факельный олголовок, отличается простотой, надёжностью и сниженной массой.

Для электрода пламени применены жаропрочные стали.

Типоразмерный ряд факельных установок ООО «ТПП Нефтеавтоматика»

Примечание: данные представлены при стандартных, усредненных соотношениях, без учета технических и эксплуатационных данных сбросного газа.

Индивидуальные технические решения

На любом объекте существует ряд технических и технологических особенностей, при которых необходимо обеспечить бесперебойность работы факельной установки. При этом, нестандартными могут быть:

Химический состав сжигаемого (сбросного) газа;

Использование сбросного газа в качестве топливного газа для дежурной горелки;

Периодичность сброса, в том числе, от нескольких источников с разным расходом и давлением;

Ограниченные технические возможности объекта для обеспечения бездымности при сжигании «тяжелых» сбросных газов;

Сложные климатические и геодезические условия.

Мы всегда используем индивидуальный подход к техническим решениям при производстве факельной установки для каждого объекта.