Простейший осциллограф из компьютера. Осциллограф из монитора компьютера в домашних условиях Современный осциллограф на микроконтроллере схема

Недавно я уже делал обзор на один конструктор, сегодня продолжение небольшой серии обзоров о всяких самодельных вещах для начинающих радиолюбителей.
Скажу сразу, это конечно не Тектроникс, и даже не DS203, но по своему интересная штучка, хоть по сути и игрушка.
Обычно перед тестами сначала вещь разбирают, здесь сначала надо собрать:)

На мой взгляд, это «глаза» радиолюбителя. Этот прибор редко обладает высокой точностью, в отличие от мультиметра, но позволяет увидеть процессы в динамике, т.е. в «движении».
Иногда такой секундный «взгляд» может помочь больше, чем день ковыряния с тестером.

Раньше осциллографы были ламповыми, потом их сменили транзисторные, но отображался результат все равно на экране ЭЛТ. Со временем на смену им пришли их цифровые собратья, маленькие, легкие, ну а логическим продолжением стало появление и конструктора для сборки такого прибора.
Несколько лет назад я на некоторых форумах встречал попытки (порой удачные) разработать самодельный осциллограф. Конструктор конечно проще их и слабее по техническим характеристикам, но могу сказать с уверенностью, собрать его сможет даже школьник.
Разработан этот конструктор фирмой jyetech. этого прибора на сайте производителя.

Возможно специалистам этот обзор покажется излишне подробным, но практика общения с начинающими радилюбителями показала, что они так лучше воспринимают информацию.

В общем обо всем я расскажу немного ниже, а пока стандартное вступление, распаковка.

Прислали конструктор в обычном пакетике с защелкой, правда двольно плотном.
Как по мне, то для такого набора очень не помешала бы красивая упаковка. Не с целью защиты от повреждений, а с целю внешней эстетики. Ведь вещь должна быить приятной уже даже на этапе распаковки, ведь это конструктор.

В пакете находилось:
Инструкция
Печатная плата
Кабель для подключения к измеряемым цепям
Два пакетика с компонентами
Дисплей.

Технические характиристики устройства очень скромные, как по мне это скорее обучающий набор, чем измерительный прибор, хотя и при помощи даже этого прибора можно проводить измерения, пусть и простые.

Также в комплект входит подробная цветная инструкция на двух листах.
В инструкции расписана последовательность сборки, калибровки и краткое руководство по использованию.
Единственный минус, это все на английском, но картинки сделаны понятно, потому даже в таком варианте большая часть будет понятна.
В инструкции даже обозначены позиционные места элементов и сделаны «чекбоксы», где надо ставить галочку после завершения определенного этапа. Очень продуманно.

Отдельным листом идет табличка со списком SMD компонентов.
Стоит отметить, что существует как минимум два варианта устройства. На первой исходно распаян только микроконтроллер, на втором распаяны все SMD компоненты.
Первый вариант рассчитан на чуть более опытных пользователей.
В моем обзоре учавствует именно такой вариант, о существовании второго варианта я узнал позже.

Печатная плата двухсторонняя, как и в прошлом обзоре, даже цвет тот же.
Сверху нанесена маска с обозначением элементов, одна часть элементов обозначена полностью, вторая имеет только позиционный номер по схеме.

С обратной стороны маркировки нет, есть только обозначение перемычек и наименование модели устройства.
Плата покрыта маской, причем маска очень прочная (невольно пришлось проверить), на мой взгляд то что надо именно для начинающих, так как тяжело что то повредить в процессе сборки.

Как я выше писал, на плату нанесены обозначения устанавливаемых элементов, маркировка четкая, претензий к этому пункту нет.

Все контакты имеют лужение, паяется плата очень легко, ну почти легко, об этом нюансе в разделе сборки:)

Как я выше писал, на плате предустановлен микроконтроллер
Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™-M3 ядре.
Максимальная частота работы 72МГц, также он имеет 2 x 12-bit, 1 μs АЦП.

С обоих сторон платы указана ее модель, DSO138.

Вернемся к перечислению комплектующих.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой.

Высыпаем на стол содержимое большого пакета. Внутри находятся разъемы, стойки и электролитические конденсаторы. Также в пакете находятся еще два маленьких пакетика:)

Раскрыв все пакеты мы видим довольно много радиодеталей. Хотя с учетом того что это цифровой осциллограф, то я ожидал больше.
Приятно то, что SMD резисторы подписаны, хотя как по мне, не мешало бы подписать и обычные резисторы, или дать в комплекте небольшую памятку по цветовой маркировке.

Дислей упакован в мягкий материал, как оказалось, он не скользит, потому болтаться в пакете не будет, а печатная плата защищает его от повреждений при транспортировке.
Но все равно, я считаю что нормальная упаковка не помешала бы.

В устройстве применен 2.4 дюйма TFT LCD индикатор со светодиодной подсветкой.
Разрешение экрана 320х240 пикселей.

Также в комплект входит небольшой кабель. Для подключения к осциллографу применен стандартный BNC разъем, на втором конце кабеля пара «крокодилов».
Кабель средней мягкости, «крокодилы» довольно большие.

Ну и вид на весь набор в полностью разложенном виде.

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

В прошлый раз я начинал сборку с резисторов, как с самых низких элементов на плате.
При наличии SMD компонентов сборку лучше начать с них.
Для этого я разложил все SMD компоненты на прилагаемом листе с указанием их номинала и позиционного обозначения на схеме.

Когда приготовился уже паять, то подумал, что элементы в слишком мелком, для начинающего, корпусе, вполне можно было применить резисторы размером 1206 вместо 0805. Разница в занимаемом месте незначительна, но паять проще.
Вторая мысль была - вот потеряю сейчас резистор и не найду. Ладно я, открою стол и достану второй такой резистор, но не у всех есть такой выбор. В данном случае производитель позаботился об этом.
Всех резисторов (жалко что и не микросхем) дал на один больше, т.е. в запас, очень предусмотрительно, зачет.

Дальше я немного расскажу о том, как паяю такие компоненты я, и как советую делать другим, но это просто мое мнение, естественно каждый может делать по своему.
Иногда SMD компоненты паяют при помощи специальной пасты, но она нечасто есть у начинающего радиолюбителя (да и у неначинающего тоже), потому я покажу как проще работать без нее.
Берем пинцетом компонент, прикладываем к месту установки.

Вообще часто я сначала промазываю место установки компонента флюсом, это облегчает пайку, но усложняет промывку платы, вымыть флюс из под компонента иногда бывает сложно.
Поэтому я в данном случае использовал просто 1мм трубчатый припой с флюсом.
Придерживая компонент пинцетом, набираем на жало паяльника капельку припоя и припаиваем одну сторону компонента.
Не страшно если пайка получилась некрасивая или не очень прочная, на данном этапе достаточно того, что компонент держится сам.
Затем повторяем операцию с остальными компонентами.
После того как мы таким образом закрепили все компоненты (или все компоненты одного номинала), можно спокойно припаять как надо, для этого поворачиваем плату так, чтобы уже припаянная сторона была слева и держа паяльник в правой руке (если вы правша), а припой в левой, проходим все незапаянные места. Если пайка второй стороны не устраивает, то поворачиваем плату на 180 градусов и аналогично пропаиваем другую сторону компонента.
Так получается проще и быстрее, чем запаивать каждый компонент индивидуально.

Здесь на фото видно несколько установленных резисторов, но пока припаянных только с одной стороны.

Микросхемы в SMD корпусе маркируются точно так же как в обычном, слева около метки (хотя обычно слева снизу если смотреть на маркировку) находится первый контакт, остальные считаются против часовой стрелки.
На фото место для установки микросхемы и пример, как она должна устанавливаться.

С микросхемами поступаем полностью аналогично примеру с резисторами.
Выставляем микросхему на площадках, припаиваем любой один вывод (лучше крайний), немного корректируем положение микросхемы (при необходимости) и запаиваем остальные контакты.
С микросхемой- стабилизатором можно поступить по разному, но я советую припаивать сначала лепесток, а потом контактные площадки, тогда микросхема точно будет ровно прилегать к плате.
Но никто не запрещает припаять сначала крайний вывод, а потом все остальные.

Все SMD компоненты установлены и припаяны, осталось несколько резисторов, по одному каждого номинала, откладываем их в пакетик, может когда нибудь пригодятся.

Переходим к монтажу обычных резисторов.
В прошлом обзоре я рассказывал немного о цветовой маркировке. В этот раз я скорее посоветую просто измерить сопротивление резисторов при помощи мультиметра.
Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет).
Изначально я искал в инструкции список номиналов и позиционных обозначений, но не нашел, так как искал их в виде таблички, а уже после монтажа выяснилось, что они есть на картинках, причем с чекбоксами для отметки установленных позиций.
Из-за моей невнимательности мне пришлось сделать свою табличку, по которой я рядом разложил устанавливаемые компоненты.
Слева отдельно виден резистор, при составлении таблички он был лишним, потому я оставил его под конец.

С резисторами поступаем похожим образом как в прошлом обзоре, формуем выводы при помощи пинцета (либо специальной оправки) так, чтобы резистор легко становился на свое место.
Будье внимательны, позиционные обозначения компонетов на плате могут быть не только надписаны, а и ПОДписаны и это может сыграть с вами злую шутку, особенно если на плате присутствует много компонентов в один ряд.

Вот тут вылез небольшой минус печатной платы.
Дело в том, что отверстия под резисторы имеют очень большой диаметр, а так как монтаж относительно плотный, то я решил выводы загибать, но несильно и потому в таких отверстиях держатся они не очень хорошо.

Из-за того, что резисторы держались не очень хорошо, я рекомендую не набивать сразу все номиналы, а установить половину или треть, потом запаять их и установить остальные.
Не бойтесь сильно обкусывать выводы, двухсторонняя плата с металлизацией прощает такие вещи, всегда можно припаять резистор хоть сверху, чего не сделаешь при односторонней печатной плате.

Все, резисторы запаяны, переходим к конденсаторам.
Я поступил с ними также как с резисторами, разложив согласно табличке.
Кстати у меня все таки остался один лишний резистор, видимо случайно положили.

Несколько слов о маркировке.
Такие конденсаторы маркируются также как и резисторы.
Первые две цифры - число, третья цифра - количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22пФ.
Они маркируются просто указанием емкости так как емкость меньше 100пФ, т.е. меньше трехзначного числа.

Сначала запаиваю мелкие конденсаторы согласно позиционным обозначениям (тот еще квест).

С конденсаторами емкостью 100нФ я немного ступил, не добавив их в табличку сразу, пришлось делать это потом от руки.

Выводы конденсаторов я также загибал не полностью, а примерно под 45 градусов, этого вполне достаточно чтобы компонент не выпал.
Кстати, на этом фото видно, что пятачки, соединенные с общим контактом платы, выполнены правильно, есть кольцевой промежуток для уменьшения теплоотдачи, это облегчает пайку таких мест.

Как то я немного расслабился на этой плате и вспомнил о дросселях и диодах уже после запаивания керамических конденсаторов, хотя лучше было их впаять перед ними.
Но особо ситуацию это не изменило, потому перейдем к ним.
В комплекте к плате дали три дросселя и два диода (1N4007 и 1N5815).

С диодами все ясно, место подписано, катод обозначен белой полосой на самом диоде и на плате, перепутать очень сложно.
С дросселями бывает немного сложнее, они иногда также имеют цветовую маркировку, благо в данном случае все три дросселя имеют один номинал:)

На плате дроссели обозначаются буквой L и волнистой линией.
На фото участок платы с запаянными дросселями и диодами.

В осциллографе применено два транзистора разной проводимости и две микросхемы стабилизаторы, на разную полярность. В связи с этим будьте внимательны при монтаже, так как обозначение 78L05 очень похоже на 79L05, но если поставить наоборот, то вы скорее всего поедете за новыми.
С транзисторами немного проще, хоть на плате и указана просто проводимость без указания типа транзистора, но тип транзистора и его позиционное обозначение можно без труда посмотреть по схеме или карте установки компонентов.
Выводы здесь формовать заметно тяжелее, так как отформовать надо все три вывода, лучше не спешить, чтобы не отломать выводы.

Формуются выводы одинаково, это упрощает задачу.
На плате положение транзисторов и стабилизаторов обозначено, но на всякий случай я сделал фото, как они должны быть установлены.

В комплекте был мощный (относительно) дроссель, который используется в преобразователе для получения отрицательной полярности и кварцевый резонатор.
Им выводы формовать не надо.

Теперь о кварцевом резонаторе, он изготовлен под частоту 8МГц, полярности также не имеет, но под него лучше подложить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
не удивляйтесь, что я в начале указал что процессор имеет максимальную частоту 72МГц, а кварц стоит всего на 8, внутри процессора есть как делители частоты, так иногда и умножители, потому ядро вполне может работать например на частоте 8х8=64МГц.
Почему то на плате контакты дросселя имеют квадратную и круглую форму, хотя сам по себе дроссель - элемент неполярный, потому просто впаиваем его на место, выводы лучше не загибать.

В комплекте дали довольно много электролитических конденсаторов, все они имеют одинаковую емкость в 100мкФ и напряжение в 16 Вольт.
Их надо запаивать обязательно с соблюдением полярности иначе возможны пиротехнические эффекты:)
Длинный вывод конденсатора это плюсовой контакт. На плате присутствует маркировка полярности как около соответствующего вывода, так и рядом с кружком, отмечающим положение конденсатора, довольно удобно.
Отмечен плюсовой вывод. Иногда маркируют минусовой, в этом случае примерно половина кружочка заштриховывается. А еще есть такой производитель компьютерного железа как Асус, который заштриховывает плюсовую сторону, потому всегда надо быть внимательным.

Потихоньку мы подошли к довольно редкому компоненту, подстроечному конденсатору.
Это конденсатор, емкость которого можно изменять в небольших пределах, например 10-30пФ, обычно и емкость этих конденсаторов невелика, до 40-50пФ.
Вообще это элемент неполярный, т.е. формально не имеет значения как его впаивать, но иногда имеет значение как его впаивать.
Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. ТАк вот в данной схеме один вывод конденсатора подключен к общему проводнику платы, а второй к остальным элементам.
Чтобы было меньше влияние отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом соединялся с общим проводом платы.
На плате указана маркировка как впаивать, а дальше по ходу обзора будет и фотка, где это видно.

Кнопки и переключатели.
Ну здесь тяжело что то сделать неправильно, так как очень тяжело их вставить как нибудь не так:)
Скажу лишь, что выводы корпуса переключателей надо припаять к плате.
В случае переключателя это не просто добавит прочности, а и соединит корпус переключателя с общим контактом платы и корпус переключателя будет работать как экран от помех.

Разъемы.
Самая сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, потому для BNC разъема лучше взять паяльник помощнее.

На фото можно увидеть -
Пайка BNC разъема, дополнительного разъема питания (единственный разъем здесь, который можно поставить наоборот) и USB разъема.

С индикатором, а вернее с разъемами для его подключения, вышла небольшая неприятность.
В комплекте забыли положить пару двойных контактов (пинов), они тут используются для закрепления стороны индикатора, обратной сигнальному разъему.

Но посмотрев на распиновку сигнального разъема я понял, что некоторые контакты можно запросто откусить и использовать вместо недостающих.
Я мог открыть ящик стола и достать оттуда такой разъем, но это было бы неинтересно и в какой то степени нечестно.

Запаиваем гнездовые (так называемые - мамы) части разъемов на плату.

На плате присутствует выход встроенного генератора 1КГц, он нам потом понадобится, хоть эти два контакта и соединяются друг с другом, но мы все равно впаиваем перемычку, она будет удобна для подключения «крокодила» сигнального кабеля.
Для перемычки удобно использовать обкушенный вывод электролитического конденсатора, они длинные и довольно жесткие.
Находится эта перемычка слева от разъема питания.

Также на плате присутствует пара важных перемычек.
Одну из них, под названием JP3 надо закоротить сразу, делается это при помощи капельки припоя.

Со второй перемычкой, немножко сложнее.
Сначала надо подключить мультиметр в режиме измерения напряжения в контрольной точке, находящейся над лепестком микросхемы-стабилизатора. Второй щуп подключается к любому контакту соединенному с общим контактом платы, например к USB разъему.
На плату подается питание и проверяется напряжение в контрольной точке, если все в порядке, то там должно быть около 3.3 Вольта.

После этого перемычка JP4 , находящаяся чуть левее и ниже стабилизатора, также соединяется при помощи капли припоя.

На обратной стороне платы есть еще четыре перемычки, их трогать не надо, это технологические перемычки, для диагностики платы и перевода процессора в режим прошивки.

Возвращаемся к дисплею. Как я выше писал, мне пришлось откусить несколько контактных пар, чтобы применить их взамен отсутствующих.
Но при сборке я решил выкусить не крайние пары, а как бы из середины, а крайнюю запаять на место, так будет сложнее перепутать что то при установке.

Хоть на дисплее и наклеена защитная пленка, я бы рекомендовал при припаивании разъема накрыть экран куском бумаги, в таком случае капли флюса, который кипит при пайке, будут отлетать на бумагу, а не на экран.

Все, можно подавать питание и проверять:)
Кстати, один из диодов, который мы запаивали ранее, служит для защиты электроники от неправильного подключения питания, со стороны разработчика это полезный шаг, так как спалить плату неправильной полярностью можно в секунду.
На плате указано питание 9 Вольт, но при этом оговорен диапазон до 12 Вольт.
В тестах я пита плату от 12 Вольт блока питания, но попробовал и от двух последовательно соединенных литиевых аккумуляторов, разница была только в чуть меньшей яркости подсветки экрана, думаю что применив стабилизатор 5 Вольт с низким падением и убрав защитный диод (или подключив его параллельно питанию и установив предохранитель), можно вполне спокойно питать плату от двух литиевых аккумуляторов.
Как вариант, использовать преобразователь питания 3.7-5 Вольт.

Так как запуск платы прошел успешно, то перед настройкой плату лучше промыть.
Я пользуюсь ацетоном, хотя он запрещен к продаже, но есть небольшие запасы, как вариант еще использовали толуол, ну или в крайнем случае медицинский спирт.
Но плату надо промыть обязательно, целиком «купать» ее не надо, достаточно пройтись снизу ваткой.

В конце ставим плату «на ноги», используя комплектные стойки, они конечно чуть меньше чем надо и немного болтаются, но все равно так удобнее, чем просто класть на стол, не говоря о том, что выводы деталей могут поцарапать крышку стола, ну и так ничего не попадает под плату и не закоротит ничего под ней.

Первая проверка от встроенного генератора, для этого подключаем «крокодил» с красным изолятором к перемычке около разъема питания, черный провод никуда подключать не надо.

Чуть не забыл, несколько слов о назначении переключателей и кнопок.
Слева расположены три трехпозиционных переключателя.
Верхний переключает режим работы входа.
Заземлен
Режим работы без учета постоянной составляющей, или АС, или режим работы с закрытым входом. Хорошо подходит для измерения переменного тока.
Режим работы с возможностью измерения постоянного тока, или режим работы с открытым входом. Позволяет проводить измерения с учетом постоянной составляющей напряжения.

Второй и третий переключатели позволяют выбрать масштаб по оси напряжения.
Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.
При этом средний переключатель позволяет выбрать напряжение, а нижний множитель, потому при помощи трех переключателей можно выбрать девять фиксированных уровней напряжения от 10мВ до 5 Вольт на клетку.

Справа расположены кнопки управления режимами развертки и режима работы.
Описание кнопок сверху вниз.
1. При коротком нажатии включает режим HOLD, т.е. фиксация показаний на дисплее. при длинном (более 3 секунд) включает или выключает режим цифрового вывода данных параметра сигнала, частоту, период, напряжения.
2. Кнопка увеличения выбранного параметра
3. Кнопка уменьшения выбранного параметра.
4. Кнопка перебора режимов работы.
Управление временем развертки, диапазон от 10мкс до 500сек.
Выбор режима работы триггера синхронизации, Авто, нормальный и ждущий.
Режим захвата сигнала синхронизации триггером, по фронту или тылу сигнала.
Выбор уровня напряжения захвата сигнала триггера синхронизации.
Прокрутка осциллограммы по горизонтали, позволяет просмотреть сигнал «за пределами экрана»
Установка позиции осциллограммы по вертикали, помогает при измерении напряжений сигнала и когда осциллограмма не влазит на экран…
Кнопка сброса, просто перезагрузка осциллографа, как выяснилось иногда бывает очень удобна.
Рядом с кнопкой есть зеленый светодиод, он моргает когда осциллограф синхронизировался.

Все режимы при выключении прибора запоминаются и включается он потом в том режиме, в котором его выключили.

Еще на плате есть разъем USB, но как я понял, он в этом варианте не используется, при подключении к компьютеру выдает что обнаружено неизвестное устройство.
Также есть контакты для перепрошивки устройства.

Все режимы, выбранные кнопками или переключателями, дублируются на экране осциллографа.

Версию ПО я не обновлял, так как стоит последняя на текущий момент 113-13801-042

Настройка прибора очень проста, помогает в этом встроенный генератор.
Скорее всего при подключении к встроенному генератору прямоугольных импульсов вы увидите следующую картину, вместо ровных прямоугольников будет либо «завал» угла верха/низа, вниз или вверх.

Корректируется это вращением подстроечных конденсаторов.
Конденсаторов два, в режиме 0.1 Вольта подстраиваем С4, в режиме 1 Вольт соответственно С6. В режиме 10мВ корректировка не производится.

Регулировкой необходимо добиться ровных прямоугольных импульсов на экране, как это показано на фотографии.

Я посмотрел этот сигнал другим осциллографом, на мой взгляд он достаточно «ровный» для калибровки данного осциллографа.

Хоть конденсаторы и установлены правильно, но даже в таком варианте небольшое влияние от металлической отвертки присутствует, пока удерживаем жало на регулируемом элементе, результат один, стоит убрать жало, результат чуть меняется.
В таком варианте либо подкручивать маленькими сдвигами, либо использовать пластмассовую (диэлектрическую) отвертку.
Мне такая отвертка досталась с какой то камерой Хиквижн.

С одной стороны у нее крестовое жало, причем срезанное, именно для таких конденсаторов, с другой - прямое.

Так как данный осциллограф больше прибор для изучения принципов работы, чем действительно полноценный прибор, то и проводить полноценное тестирование я не вижу смысла, хотя основные вещи покажу и проверю.
1. Совсем забыл, иногда при работе внизу экрана вылазит реклама производителя:)
2. Отображения цифровых значений параметра сигнала, подан сигнал от встроенного генератора прямоугольных импульсов.
3. Вот такой собственный шум входа осциллографа, в интернет я встречал упоминания об этом, а так же о том, что новая версия имеет меньший уровень шумов.
4. Для проверки, что это действительно шум аналоговой части, а не наводки, я перевел осциллограф в режим с закороченным входом.

1. Переключил время развертки в режим 500сек на деление, как по мне, ну это уж совсем для экстремалов.
2. Уровень входного сигнала можно менять от 10мВ на клетку
3. До 5 Вольт на клетку.
4. Прямоугольный сигнал частотой 10КГц с генератора осциллографа DS203.

1. Прямоугольный сигнал частотой 50КГц с генератора осциллографа DS203. Видно что на такой частоте сигнал уже сильно искажен. 100КГц подавать уже не имеет особого смысла.
2. Синусоидальный сигнал частотой 20КГц с генератора осциллографа DS203.
3. Сигнал треугольной формы частотой 20КГц с генератора осциллографа DS203.
4. Пилообразный сигнал частотой 20КГц с генератора осциллографа DS203.

Дальше я решил немного посмотреть как ведет себя прибор при работе с синусоидальным сигналом, поданным от аналогового генератора и сравнить его со своим DS203
1. Частота 1КГц
2. Частота 10КГц

1. Частота 100КГц, в конструкторе нельзя выбрать время развертки меньше 10мс, потому только так:(
2. А вот так может выглядеть синусоидальный сигнал частотой 20КГц, поданный с DS203, но в другом режиме входного делителя. Выше был скриншот такого сигнала, но поданный в положении делителя 1 Вольт х 1, здесь сигнал в режиме 0.1 Вольт х 5.
Ниже видно как выглядит этот сигнал при подаче на DS203

Сигнал 20КГц, поданный с аналогового генератора.

Сравнительное фото двух осциллографов, DSO138 и DS203. Оба подключены к аналоговому генератору синуса, частота 20КГц, на обоих осциллографах выставлен одинаковый режим работы.

Резюме.
Плюсы
Интересная обучающая конструкция
Качественно изготовленная печатная плата, прочное защитное покрытие.
Собрать конструктор под силу даже начинающему радиолюбителю.
Продуманная комплектация, порадовали запасные резисторы в комплекте.
В инструкции хорошо расписан процесс сборки.

Минусы
Небольшая частота входного сигнала.
Забыли положить в комплект пару контактов для крепления индикатора
Простенькая упаковка.

Мое мнение. Скажу коротко, был бы у меня в детстве такой конструктор, я был бы наверное очень счастлив, даже несмотря на его недостатки.
А если длинно, то конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с очень важным для радиолюбителя прибором - осциллографом. Пусть простым, пусть без памяти и с низкой частотой, но это куда лучше возни с аудиокартами.
Как серьезный прибор считать его конечно нельзя, но он таким и не позиционируется, а как конструктор, более чем.
Зачем я заказал этот конструктор? Да просто было интересно, ведь все мы любим игрушки:)

Надеюсь что обзор был интересен и полезен, жду предложений по поводу вариантов тестирования:)
Ну и как всегда, дополнительные материалы, прошивки, инструкции, исходники, схема, описание -

Осциллограф - инструмент, который имеется почти у каждого радиолюбителя. Но для начинающих он стоит слишком дорого.

Проблема высокой стоимости решается просто: есть много вариантов изготовления осциллографа.

Компьютер отлично подойдёт для такой переделки, причём его функциональность и внешний вид никак не пострадают.

Устройство и назначение

Принципиальная схема осциллографа сложна для понимания начинающего радиолюбителя, поэтому рассматривать её нужно не целиком, а предварительно разбив на отдельные блоки:

Каждый блок представляет собой отдельную микросхему, или плату .

Сигнал с исследуемого устройства поступает через вход Y на входной делитель, задающий чувствительность измерительного контура. После прохождения предварительного усилителя и линии задержки он попадает на конечный усилитель, который управляет вертикальным отклонением индикаторного луча. Чем выше уровень сигнала - тем больше отклоняется луч. Так устроен канал вертикального отклонения.

Второй канал - горизонтального отклонения, нужен для синхронизации луча с сигналом. Он позволяет удерживать луч в заданном настройками месте.

Без синхронизации луч уплывет за границы экрана.

Синхронизация бывает трёх видов: от внешнего источника, от сети и от исследуемого сигнала. Если сигнал имеет постоянную частоту, то синхронизацию лучше использовать от него. В качестве внешнего источника обычно выступает лабораторный генератор сигналов. Вместо него для этих целей подойдёт смартфон с установленным на него специальным приложением, которое модулирует импульсный сигнал и выводит его в гнездо для наушников.

Осциллографы применяются при ремонте, проектировании и настройке различных электронных устройств. Сюда входят диагностика систем автомобиля, устранение неисправностей в бытовой технике и многое другое.

Осциллограф измеряет:

  • Уровень сигнала.
  • Его форму.
  • Скорость нарастания импульса.
  • Амплитуду.

Также он позволяет развёртывать сигнал до тысячных долей секунды и просматривать его в мельчайших подробностях.

Большинство осциллографов имеют встроенный частотомер.

Осциллограф, подключаемый через USB

Есть множество вариантов изготовления самодельных USB осциллографов, но не все из них доступны новичкам. Самым простым вариантом будет его сборка из уже готовых комплектующих. Они продаются в радиомагазинах. Более дешёвым вариантом будет купить эти радиодетали в китайских интернет-магазинах, но нужно помнить о том, что купленные в Китае комплектующие могут прийти в неисправном состоянии, а деньги за них возвращают далеко не всегда. После сборки должна получиться небольшая приставка, подключаемая к ПК.

Этот вариант осциллографа имеет самую высокую точность. Если встает проблема, какой осциллограф выбрать для ремонта ноутбуков и другой сложной техники, лучше остановить свой выбор на нём.

Для изготовления понадобятся:

  • Плата с разведёнными дорожками.
  • Процессор CY7C68013A.
  • Микросхема аналого-цифрового преобразователя AD9288−40BRSZ.
  • Конденсаторы, резисторы, дроссели и транзисторы. Номиналы этих элементов указаны на принципиальной схеме.
  • Паяльный фен для запайки SMD компонентов.
  • Провод в лаковой изоляции сечением 0,1 мм².
  • Тороидальный сердечник для намотки трансформатора.
  • Кусок стеклотекстолита.
  • Паяльник с заземлённым жалом.
  • Припой.
  • Флюс.
  • Паяльная паста.
  • Микросхема памяти EEPROM flash 24LC64.
  • Корпус.
  • USB разъём.
  • Гнездо для подключения щупов.
  • Реле ТХ-4,5 или другое, с управляющим напряжением не более 3,3 В.
  • 2 операционных усилителя AD8065.
  • DC-DC преобразователь.

Собирать нужно по этой схеме:

Обычно для изготовления печатных плат радиолюбители пользуются методом травления. Но сделать таким образом двухстороннюю печатную плату со сложной разводкой самостоятельно не получится, поэтому её нужно заранее заказать на заводе, выпускающем подобные платы.

Для этого нужно отослать на завод чертёж платы, по которому её изготовят. На одном и том же заводе делают разные по качеству платы. Оно зависит от выбранных при оформлении заказа опций.

Для того чтобы получить в итоге хорошую плату, нужно указать в заказе следующие условия:

  • Толщина стеклотекстолита - не менее 1,5 мм.
  • Толщина медной фольги - не менее 1 OZ.
  • Сквозная металлизация отверстий.
  • Лужение контактных площадок свинецсодержащим припоем.

После получения готовой платы и покупки всех радиодеталей можно приступать к сборке осциллографа.

Первым собирается DC-DC преобразователь, выдающий напряжения +5 и -5 вольт.

Его нужно собрать на отдельной плате и подключить к основной с помощью экранированного кабеля .

Припаивать микросхемы к основной плате нужно аккуратно, не перегревая их. Температура паяльника не должна быть выше трехсот градусов, иначе паяемые детали выйдут из строя.

После установки всех компонентов собирают устройство в подходящий по размеру корпус и подключают к компьютеру USB кабелем. Замыкают перемычку JP1.

Нужно установить и запустить на ПК программу Cypress Suite, перейти во вкладку EZ Console и кликните по LG EEPROM. В появившемся окне выбрать файл прошивки и нажать Enter. Дождаться появления надписи Done, говорящей об успешном завершении процесса. Если вместо неё появилась надпись Error, значит, на каком-то этапе произошла ошибка. Нужно перезапустить прошивальщик и попробовать снова.

После прошивки изготовленный своими руками цифровой осциллограф будет полностью готов к работе.

Вариант с автономным питанием

В домашних условиях радиолюбители обычно пользуются стационарными устройствами. Но иногда возникает ситуация, когда нужно отремонтировать что-то находящееся вдали от дома. В таком случае понадобится портативный осциллограф с автономным питанием.

Перед началом сборки приготовьте следующие комплектующие:

  • Ненужные Bluetooth наушники или аудиомодуль.
  • Планшет или смартфон на Android.
  • Литий-ионный аккумулятор типоразмера 18650.
  • Холдер для него.
  • Контроллер заряда.
  • Гнездо Jack 2,1 Х 5,5 мм.
  • Разъем для подключения измерительных щупов.
  • Сами щупы.
  • Выключатель.
  • Пластиковая коробочка из-под губки для обуви.
  • Экранированный провод сечением 0,1 мм².
  • Тактовая кнопка.
  • Термоклей.

Нужно разобрать беспроводную гарнитуру и достать из неё плату управления. Отпаять от неё микрофон, кнопку включения и аккумулятор. Отложить плату в сторонку.

Вместо блютус-наушников можно использовать Bluetooth аудиомодуль.

Ножом соскрести с коробочки остатки губки и хорошо почистить её с использованием моющих средств. Подождать, пока она высохнет, и вырезать отверстия под кнопку, выключатель и разъёмы.

Припаять провода к гнёздам, холдеру, кнопке и выключателю. Установить их на свои места и закрепить термоклеем.

Провода нужно соединять так, как показано на схеме:

Расшифровка обозначений:

  1. Холдер.
  2. Выключатель.
  3. Контакты «BAT + и «BAT - .
  4. Контроллер заряда.
  5. Контакты «IN + и «IN - .
  6. Разъём Jack 2,1 Х 5,5 мм.
  7. Контакты «OUT+ и «OUT - .
  8. Контакты батареи.
  9. Плата управления.
  10. Контакты кнопки включения.
  11. Тактовая кнопка.
  12. Гнездо для щупов.
  13. Контакты микрофона.

Затем скачать из плеймаркета приложение виртуального осциллографа и установить его на смартфон. Включить блютус модуль и синхронизировать его со смартфоном. Подключить щупы к осциллографу и открыть на телефоне его программную часть.

При касании щупами источника сигнала на экране Android-устройства появится кривая, показывающая уровень сигнала. Если она не появилась, значит, где-то была допущена ошибка.

Следует проверить правильность подключения и исправность внутренних компонентов. Если все в порядке, нужно попробовать запустить осциллограф снова.

Установка в корпус монитора

Этот вариант самодельного осциллографа легко устанавливается в корпус настольного ЖК монитора. Такое решение позволяет сэкономить немного места на вашем рабочем столе.

Для сборки понадобятся:

  • Компьютерный ЖК монитор.
  • DC-DC инвертор.
  • Материнская плата от телефона или планшета с HDMI-выходом.
  • USB разъём.
  • Кусок HDMI кабеля.
  • Провод сечением 0,1 мм².
  • Тактовая кнопка.
  • Резистор на 1 кОм.
  • Двусторонний скотч.

Встроить своими руками в монитор осциллограф сможет каждый радиолюбитель. Для начала нужно снять с монитора заднюю крышку и найти место для установки материнской платы. После того как определились с местом, рядом с ним нужно вырезать в корпусе отверстия для кнопки и USB разъёма.

Второй конец кабеля нужно припаять к плате от планшета. Перед припаиванием каждой жилки прозванивать её мультиметром. Это поможет не перепутать порядок их подключения.

Следующим шагом нужно выпаять с платы планшета кнопку включения и micro USB разъём. К тактовой кнопке и USB гнезду припаять провода и закрепить их в вырезанных отверстиях.

Затем соединить все провода так, как это показано на рисунке, и припаять их:

Поставить перемычку между контактами GND и ID в микро ЮСБ разъёме. Это нужно для перевода USB порта в режим OTG.

Нужно приклеить инвертор и материнку от планшета на двусторонний скотч, после чего защёлкнуть крышку монитора.

Подключить к USB порту мышку и нажать кнопку включения. Пока устройство загружается, включить Bluetooth передатчик. Затем нужно синхронизировать его с приёмником . Можно открыть приложение осциллографа и убедиться в работоспособности собранного устройства.

Вместо монитора отлично подойдёт и старый ЖК телевизор, в котором нет Смарт ТВ. Начинка от планшета по своим возможностям превосходит многие Smart TV системы. Не стоит ограничивать её применение одним лишь осциллографом.

Изготовление из аудиокарты

Осциллограф, собранный из внешнего аудиоадаптера, обойдётся всего в 1,5-2 доллара и займёт минимум времени на своё изготовление. По размеру он получится не больше обычной флешки, а по функционалу не уступит своему большому собрату.

Необходимые детали:

  • USB аудиоадаптер.
  • Резистор на 120 кОм.
  • Штекер mini Jack 3,5 мм.
  • Измерительные щупы.

Нужно разобрать аудиоадаптер, для этого стоит поддеть и расщёлкнуть половинки корпуса.

Выпаять конденсатор C6 и припаять на его место резистор. Затем установить плату обратно в корпус и собрать его.

Следует отрезать от щупов стандартный штекер и припаять на его место мини-джек. Подключить щупы ко звуковому входу аудиоадаптера.

Затем нужно скачать соответствующий архив и распаковать его. Вставить карту в USB разъём.

Осталось самое простое: зайти в Диспетчер устройств и во вкладке «Аудио, игровые и видеоустройства» найти подключённый USB аудиоадаптер. Щёлкнуть по нему правой кнопкой мыши и выбрать пункт «Обновить драйвер».

Затем переместить файлы miniscope.exe, miniscope.ini и miniscope.log из архива в отдельную папку. Запустить «miniscope.exe».

Перед использованием программу нужно настроить. Необходимые настройки показаны на скриншотах:

Если коснуться щупами источника сигнала, в окне осциллографа должна появиться кривая:

Таким образом, чтобы превратить аудиоадаптер в осциллограф , нужно приложить минимум усилий. Но стоит помнить, что погрешность такого осциллографа составляет 1-3%, чего явно недостаточно для работы со сложной электроникой. Он отлично подойдёт для начинающего радиолюбителя, а мастерам и инженерам стоит присмотреться к другим, более точным осциллографам.

Цифровые осциллографы используются любителями электроники и это одна из привычных вещей, находящихся за их рабочими столами. Но покупка готового решения может влететь в копеечку, поэтому я решил, что соберу собственный осциллоскоп своими руками. Этот базовый проект поможет вам повысить свои навыки и в итоге у вас будет свой самодельный неплохой прибор, который облегчит вам жизнь.

Ардуино – замечательная вещь, работающая на 8-битных микроконтроллерах, которые имеют цифровые выходы, SPI, линии I2S, последовательную связь, ADC и т.д. Таким образом, использование в этом проекте Ардуино – хорошая идея.

Шаг 1: Необходимые материалы




Я хотел, чтобы всё оставалось простым и дешевым, поэтому вам понадобятся:

  • Ноутбук x1
  • Ардуино x 1 (UNO,PRO MINI, NANO –подойдёт любой, кроме MEGA)
  • Кабели со штекерами x 2
  • Макетная плата x 1
  • Клипсы аллигаторы x 2
  • Кабель джек папа-папа на 3.5 мм x 1
  • Источник аудио, или другого сигнала, чью форму вы хотите увидеть

Шаг 2: Код и программа осциллоскопа


После подключения, просто загрузите в него код из zip-архива. Этот код просто считывает напряжение на аналоговых пинах A0-A5 или A7 Ардуино (в зависимости от вашей платы), а затем конвертирует его в значение, варьирующееся от 0 до 1023. Далее это значение отправляется на компьютер через порт USB.

Пины A0-A5 или A7 (в зависимости от вашей платы) действуют в качестве 6 или 8 каналов осциллоскопа, но софт позволяет отобразить только три канала за раз.

После того, как вы открыли программу осциллоскопа вслед за загрузкой скетча, выберете нужные параметры baud rate (скорость передачи) и COM-порт, а затем откройте каналы.

Программа осциллоскопа спроектирована так, чтобы принимать значения с Ардуино и строить из них график, добавляя значения в линию, что предоставляет вам неплохие графики в виде волн, прямо как на осциллоскопе.

Файлы

Шаг 3: Принцип действий



  1. Подключите Ардуино
  2. Загрузите код
  3. Пустите сигнал через пины A0 — A5 или A7 (в зависимости от вашей платы). Я выбрал сигнал, идущий от моего телефона через джек. Один конец провода был подключен к телефону, а на другом конце я подключил землю к GND Ардуино, а второй аллигатор был подключен к одному из аудиоканалов. (в моем случае правый канал аудиосигнала) .
  4. Откройте программу осциллографа
  5. Выберите COM-порт и baud rate
  6. Откройте каналы и всё готово!

Шаг 4: Особенности

  • Разрешение осциллоскопа: примерно 0.0049 Вольта (4.9мВ)
  • Частота обновления: 1КГц
  • Скорость передачи: 115200
  • Диапазон напряжения: 0-5 Вольт
  • Он может отображать одновременно 3 канала

Замечание: не превышайте на электронном осциллографе предел в 5 Вольт, или вы поджарите свой Ардуино.

Ограничения:

  1. Напряжение нельзя превышать, оно находится в диапазоне 0-5 Вольт
  2. Любой сигнал выше 1КГц не будет замечен Ардуино, либо же он будет определяться как мусорные значения (помехи)
  3. Не пробуйте измерить сигналы AC, так как аналоговые пины не приспособлены для этого и в конце концов вы либо повредите Ардуино, либо засечёте позитивную половину

Шаг 5: Все готово!

Итак, я думаю, что было довольно просто сделать свой осциллограф на Ардуино. Надеюсь, вам всё понравилось.

Частота измерения: 10 Гц - 7.7 кГц
Макс. входное напряжение: 24В AC / 30В DC
Напряжение питания: 12В DC
Разрешение экрана: 128x64 пикселей
Область экрана осциллограммы: 100x64 пикселей
Информационная область экрана: 28x64 пикселей
Режим триггера: автоматический

Введение

Однажды, просматривая различные интернет сайты по электронике, я наткнулся на очень любопытный проект осциллографа, который был спроектирован с использованием МК PIC18F2550 и графического LCD с контроллером KS0108. Это был веб-сайт Steven Cholewiak . Это была хорошая схема и я решил разработать свой проект осциллографа и использование языка С, на котором я программировал последние года, вместо ассемблера. В качестве среды разработки я использовал , которая основывается на open source AVR-GNU компиляторе и прекрасно работает с . Графическую библиотеку я разработал сам, специально для данного проекта. Если вы захотите ее использовать для каких-то других проектов, то ее необходимо переделывать. При измерении прямоугольного сигнала, максимальная частота, при которой вы увидите хорошую осциллограмму составляет около 5 кГц. Для других форм сигналов (синусоида или треугольный сигнал) максимальная частота составляет около 1 кГц.

Принципиальная схема AVR-осциллографа приведена на картинке ниже (нажмите для увеличения):

Напряжение питания схемы составляет 12 вольт постоянного тока. Из этого напряжения, в дальнейшем получается еще 2 напряжения: +8.2В для IC1 и +5В для IC2, IC3. Устройство может измерять входное напряжение от +2.5В до -2.5В или от 0 до +5В, зависящее от позиции переключателя S1 (выбор типа входного тока: постоянный или переменный). При использовании пробника 1:10, входное напряжение соответственно может быть увеличено в 10 раз. Кроме того, переключателем S2, можно установить дополнительно деление напряжения на 2.

Прошивка ATmega32

Файл прошивки: AVR_oscilloscope.hex, при выборе фьюзов необходимо указать использование внешнего кварца. После, необходимо обязательно отключить JTAG интерфейс, если этого не сделать, то на осциллографе будет отображаться экран инициализации, а после он будет уходить в перезагрузку.

Настройка

Для настройки прибора нужно выполнить всего 2 вещи: настроить контрастность LCD при помощи подстроечного резистора Р2 и выставить центр осциллограммы при помощи подстроечного резистора Р1.

Использование

Вы можете перемещать луч осциллограммы вверх или вниз путем нажатия кнопок S8 и S4. Один квадрат на экране, соответствует 1В.
При помощи кнопок S7 и S3 можно увеличивать или уменьшать частоту измерений. Минимальная частота формы сигнала, которая может быть отображена на LCD составляет 460Гц. Если необходимо посмотреть сигнал с более низкой частотой, например 30Гц, то необходимо нажать S7 для сжатия осциллограммы или S3 для растяжения.
В осциллографе используется автоматический режим триггера. Это означает, что если входной сигнал повторяющийся (к примеру треугольник) то триггер работает хорошо. Но если, форма сигнала постоянно меняется (к примеру какая-то последовательность данных), то для фиксации изображения необходимо нажать кнопку S6. Повторное нажатие S6 возвращает в нормальный режим.

Видео работы осциллографа

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Операционный усилитель

LM358

1 В блокнот
IC2 LCD-дисплей DEM128064A 1 128x64, контроллер KS0108 В блокнот
IC3 МК AVR 8-бит

ATmega32

1 В блокнот
IC4 Линейный регулятор

LM7805

1 В блокнот
D1 Стабилитрон

1N4738A

1 8.2В В блокнот
D2 Выпрямительный диод

1N4007

1 В блокнот
C1 Конденсатор 470 нФ 1 В блокнот
C2 Конденсатор 27 пФ 1 В блокнот
C3 22 мкФ 16 В 1 В блокнот
C4, C7, C9 Конденсатор 100 нФ 3 В блокнот
C5, C6 Конденсатор 22 пФ 2 В блокнот
C8 Электролитический конденсатор 100 мкФ 25 В 1 В блокнот
R1, R2, R4 Резистор

1 МОм

3 В блокнот
R3, R5 Резистор

390 кОм

2 В блокнот
R6 Резистор

56 Ом

1 В блокнот
R7 Резистор

220 Ом

1 В блокнот
P1 Подстроечный резистор 10 кОм 1 В блокнот
P2 Подстроечный резистор 22 кОм 1 В блокнот
X1 Кварц 16 МГц 1

Поскольку интегрированный в микроконтроллер АЦП довольно медленный, было принято решение использовать внешний скоростной АЦП AD9280. В качестве дисплея используется WG12864A (128*64). Прошивка написана на С в компиляторе MikroC pro for AVR 5.60.

Характеристики осциллографа:

Входное сопротивление 100 кОм;

Максимальная частота дискретизации 9 МГц;

Минимальная частота 25 Гц;

Максимальная частота 500 кГц;

Минимальное напряжение +/- 0,25 В;

Максимальное напряжение +/- 25 В;

Напряжени е питания 9 В;

С правой стороны на экране отображается амплитудное значение напряжения, среднеквадратическое значение напряжения, частота в кГц, тип синхронизации и делитель. ATMEGA32 работает на повышенной частоте 26,601712 МГц. Кварц выпая л с денди. Для стабильной работы ATMEGA32 питается повышенным напряжением 5,4 В. Для этого в минусовой вывод стабилизатор а 7805 впаян о 2 диода Шоттки с падением на каждом 0,2 В. Если ATMEGA32 не будет стабильно работать на 26,601712 МГц, можно поставить кварц на 20 МГц или поставить внешний генератор на 32 МГц. При частотах, отличных от 26,601712 МГц необходимо изменить частоту в настройках проекта и подобрать другие константы для подсчета частоты. Стабилизатор 7805 необходимо поставить на радиатор. В качестве входного разъема используется з звуковой 3,5 мм. Микросхема ICL7660 делает отрицательное напряжение -5,4 В, котор о е необходим о для питания ОУ и для смещения переменного сигнала в плюсовой диапазон. В качестве ОУ я использовал LM358 , питал его напряжением 6,5 В от стабилитрон а . LM358 сильно искажа ет сигнал на частотах выше 20 к Гц. Прямоугольные импульсы на высоких частотах можно увидеть на фото.

ОУ необходимо использовать с частотой 10 МГц. Возможно, подойдет lm833. Если ОУ будет rail-to-rail, то можно питать его от 5,4 V. Например, MCP6H92.

Диапазоны переключаются трехпозиционным переключателем - 1:1 (25 V); 1:4 (10 V); 1:10 (2,5 V).

Для управления осциллографом используется 5 клавиш. Клавиши вверх/вниз используются для установления развертки по амплитуде. Клавиши влево/вправо предназначены для изменения частоты виб о рок АЦП. Центральная клавиша используется для входа в меню. В первом пункте выбирается тип отображения осциллограммы: по точкам или по линиям. Во втором пункте выставляется делитель в зависимости от переключателя диапазонов напряжения. Он необходим для правильного отображения напряжения. В третьем пункте выбирается тип синхронизации : по максим уму , по спаду фронта, переход через ноль.

Для настройки осциллографа необходимо выставить нужную контрастность дисплея переменным резистором и выставить линию на ноль (без сигнала на входе), предварительно увеличив рамах по амплитуде. На фото осциллограф со старой разводкой.

Схема и печатка обновленная версии V2

Схема и печатки обновления V3